Title: Domain Walls in Super-QCD

Speakers: Francesco Benini

Collection: Boundaries and Defects in Quantum Field Theory

Date: August 06, 2019 - 2:00 PM

URL: http://pirsa.org/19080058

Abstract: Four-dimensional Yang-Mills and (massive) QCD with minimal N=1 supersymmetry are theories with multiple gapped vacua. Therefore, different regions of space can sit in different vacua and be connected by BPS domain walls. I will present a compact 3D worldvolume description of the walls, capable of classifying all possible BPS walls between vacua and of capturing a 2nd order phase transition as the quark mass is varied. Such a proposal will be confirmed by explicit 4D constructions of BPS domain walls, extending the existing literature.

Pirsa: 19080058

Domain Walls in Super-QCD

Francesco Benini

SISSA (Trieste)

Boundaries and Defects in QFT Perimeter Institute, 6–9 August 2019

with Vladimir Bashmakov, Sergio Benvenuti, Matteo Bertolini, Paolo Spezzati

arXiv: 1812.04645 and in progress

Pirsa: 19080058 Page 2/25

Pirsa: 19080058 Page 3/25

3D/4D connection:

4D theory with ⇒ multiple gapped vacua

Domain Walls separating them with 3D worldvolume theory

- Relation between 4D and 3D dynamics, their symmetries, anomalies, . . .
- ullet Changing "bulk" parameters ullet transitions in the worldvolume theory
 - ★ 3D transition with no bulk transition
- Different descriptions \longleftrightarrow Different phases or dualities in 3D
- Beautifully applied to YM and QCD [Gaiotto, Kapustin, Komargodski, Seiberg 17]
 [Gaiotto, Komargodski, Seiberg 17; di Vecchia, Rossi, Veneziano, Yankielowicz 17]

Pirsa: 19080058 Page 4/25

Multiple gapped vacua: • spontaneously broken discrete symmetry

supersymmetry

We look at 4D $\mathcal{N} = 1$ (massive) SQCD:

Multiple vacua for generic parameters

ullet BPS domain walls host a 3D $\mathcal{N}=1$ worldvolume theory

 $SUSY \Rightarrow 2^{nd}$ order phase transitions on DWs

A lot was already done, but not complete classification

[Acharya, Armoni, de Carlos, Dvali, Giveon, Hindmarsh, Hollowood, Israel, Kaplunovsky, Kovner, McNair, Moreno, Niarchos, Poppitz, Ritz, Shifman, Smilga, Sonnenshein, Vafa, Vainshtein, Vaselov, Witten, Yankielowicz, . . .]

Pirsa: 19080058 Page 5/25

4D $\mathcal{N}=1$ (massive) Super-QCD

$$SU(N)$$
 SQCD with F flavors Q,\widetilde{Q}

- Restrict to F < N: only mesons (not baryons) are relevant
 - ightarrow gauge-invariant meson superfields $M=\widetilde{Q}Q$
- Parameters: $\Lambda^{3N-F} = \mu^{3N-F} \ e^{-rac{8\pi^2}{g(\mu)^2}+i heta}$, mass matrix m_{4d} (F imes F)

Pirsa: 19080058 Page 6/25

4D $\mathcal{N}=1$ (massive) Super-QCD

$$SU(N)$$
 SQCD with F flavors Q,\widetilde{Q}

- Restrict to F < N: only mesons (not baryons) are relevant
 - ightarrow gauge-invariant meson superfields $M=\widetilde{Q}Q$
- Parameters: $\Lambda^{3N-F} = \mu^{3N-F} \ e^{-\frac{8\pi^2}{g(\mu)^2} + i\theta}$, mass matrix m_{4d} $(F \times F)$

Pirsa: 19080058 Page 7/25

4D $\mathcal{N}=1$ (massive) Super-QCD

$$W_{\text{eff}} = m_{4d} \operatorname{Tr} M + (N - F) \left(\frac{\Lambda^{3N - F}}{\det M} \right)^{\frac{1}{N - F}}$$

• Symmetries: $\mathbb{Z}_{2N} \times SU(F) \times U(1)_B$

N gapped vacua from spontaneous R-symmetry breaking $\mathbb{Z}_{2N} o \mathbb{Z}_2$

$$\langle M \rangle = \widetilde{M} \, \mathbb{1}_F \qquad \langle \lambda \lambda \rangle = m_{4d} \, \widetilde{M} \qquad \widetilde{M} = \left(\frac{\Lambda^{3N-F}}{m_{4d}^{N-F}}\right)^{1/N}$$

4D $\mathcal{N}=1$ superalgebra admits a two-brane charge:

[Azcarraga, Gauntlett, Izquierdo, Townsend 89; Dvali, Shifman 96]

$$\{Q_{\alpha}, \overline{Q}_{\dot{\alpha}}\} = 2\sigma^{\mu}_{\alpha\dot{\alpha}} P_{\mu}$$

$$\{Q_{\alpha},Q_{\beta}\}=\sigma^{\mu\nu}_{\alpha\beta}\,Z_{\mu\nu}$$
 and c.c.

- BPS domain walls
- Protected tension in terms of "central charge" [Abraham, Townsend 91; Cecotti, Vafa 92]

$$T = |Z| ,$$

$$T = |Z|$$
, $Z = 2 \Delta W$

Tension is controlled by the shift of superpotential

- ★ Parallel multiple walls decay to a bound state
 - There can be degenerate walls connecting the same two vacua

3D phase transitions

• Large mass $m_{4d}\gg \Lambda$: SU(N) Super-Yang-Mills Domain walls support TQFT (gapped) [Acharya, Vafa 01]

• Small mass $m_{4d}\ll \Lambda$: almost-weakly-coupled Wess-Zumino description on *mesonic space* Inequivalent degenerate walls, with 3d Goldstones + TQFT

Pirsa: 19080058 Page 10/25

Domain walls in Super-Yang-Mills

SU(N) SYM

ullet N gapped vacua

Gaugino condensate $\langle \lambda \lambda \rangle = \Lambda^3 \, e^{\frac{2\pi i}{N} k}$ breaks R-symmetry $\mathbb{Z}_{2N} \to \mathbb{Z}_2$

• 3D $\mathcal{N}=1$ low-energy theory on k-wall:

[Acharya, Vafa 01]

[also Armoni, Hollowood 05; ibid. 06; Bashmakov, Gomis, Komargodski, Sharon 18]

3D
$$\mathcal{N}=1$$
 $U(k)_{N-\frac{k}{2},N}$ + singlet Φ_0
 \downarrow
$$U(k)_{N-k,N}$$
 Chern-Simons TQFT

Domain walls in Super-QCD

SU(N) massive SQCD with ${\cal F}$ flavors

Our proposal for 3D worldvolume theory:

3D
$$\mathcal{N}=1$$
 $U(k)_{N-\frac{k}{2}-\frac{F}{2},N-\frac{F}{2}}$ with F flavors of X 's

$$W = \operatorname{Tr} X^{\dagger} X X^{\dagger} X + \alpha \left(\operatorname{Tr} X^{\dagger} X \right)^{2} + m_{(3d)} \operatorname{Tr} X^{\dagger} X$$

Domain walls in Super-QCD

SU(N) massive SQCD with ${\cal F}$ flavors

Our proposal for 3D worldvolume theory:

3D
$$\mathcal{N}=1$$
 $U(k)_{N-\frac{k}{2}-\frac{F}{2},N-\frac{F}{2}}$ with F flavors of X 's

$$W = \operatorname{Tr} X^{\dagger} X X^{\dagger} X + \alpha \left(\operatorname{Tr} X^{\dagger} X \right)^{2} + m_{(3d)} \operatorname{Tr} X^{\dagger} X$$

k-walls and (N-k)-walls related by parity reversal: [Choi, Roček, Sharon 18]

$$U(k)_{N-\frac{k+F}{2},N-\frac{F}{2}} \text{ with } F \text{ flavors } \quad \leftrightarrow \quad U(N-k)_{-\frac{N+k-F}{2},-N+\frac{F}{2}} \text{ with } F \text{ flavors }$$

Analysis of vacua

- $m_{(3d)}>0$: unique vacuum at $X^\dagger X=0$ \to $\mathcal{N}=1$ $U(k)_{N-\frac{k}{2},N}$ (AV)
- \bullet $m_{(3d)} < 0$: multiple vacua $X^\dagger X \propto \begin{pmatrix} \mathbbm{1}_J & 0 \end{pmatrix}$ flavor symmety breaking

$$\mathcal{N}=1 \qquad U(k-J)_{N-\frac{k}{2}-F+\frac{J}{2},\,N-F} \quad \times \quad \text{NLSM} \quad \frac{U(F)}{U(J)\times U(F-J)}$$
 with
$$\max(0,F+k-N) \leq J \leq \min(k,F)$$

• J-vacua: inequivalent degenerate BPS k-walls between same two 4D vacua

• SUSY \Rightarrow 2nd order phase transition (CFT)

Multiple vacua coalesce into one at a single point

• Enhanced 3D $\mathcal{N}=2$ SUSY (SCFT) for special values

F=1 or k=1: only one quartic superpotential term

At large CS level can be seen perturbatively

[Avdeev, Grigorev, Kazakov 92]

[Avdeed, Kazakov, Kondrashuk 93]

Pirsa: 19080058 Page 15/25

• SUSY \Rightarrow 2nd order phase transition (CFT) Multiple vacua coalesce into one at a single point

• Enhanced 3D $\mathcal{N}=2$ SUSY (SCFT) for special values

F=1 or k=1: only one quartic superpotential term

At large CS level can be seen perturbatively

[Avdeev, Grigorev, Kazakov 92]

[Avdeed, Kazakov, Kondrashuk 93]

• Enhanced 3D $\mathcal{N}=4$ SUSY for SU(2), F=1, k=1

[Gang, Yamazaki 18]

 $\mathcal{N}=1$ $U(1)_{\pm\frac{3}{2}}$ with 1 flavor \longleftrightarrow $\mathcal{N}=1$ $SU(2)_{\pm\frac{3}{2}}$ with 1 flavor

Pirsa: 19080058

4D construction of domain walls

• For $m_{4d} \ll \Lambda$: 4D vacua lie in the weakly-coupled Higgsed phase

Low energy effective theory: Wess-Zumino (WZ) model on mesonic space

$$\mathcal{K} = 2 \operatorname{Tr} \sqrt{\overline{M}M}$$
 $W = m_{4d} \operatorname{Tr} M + W_{\mathsf{ADS}}(M)$

⇒ Construct WZ-type walls

Valid as long as we remain in the Higgsed phase throughout the wall

 \star Caveat: unbroken SU(N-F) SYM theory on mesonic space

Pirsa: 19080058 Page 17/25

4D construction of domain walls

• For $m_{4d} \ll \Lambda$: 4D vacua lie in the weakly-coupled Higgsed phase

Low energy effective theory: Wess-Zumino (WZ) model on mesonic space

$$\mathcal{K} = 2 \operatorname{Tr} \sqrt{\overline{M}M}$$
 $W = m_{4d} \operatorname{Tr} M + W_{\mathsf{ADS}}(M)$

⇒ Construct WZ-type walls

Valid as long as we remain in the Higgsed phase throughout the wall

 \star Caveat: unbroken SU(N-F) SYM theory on mesonic space

Pirsa: 19080058 Page 18/25

$$W = m \operatorname{Tr} M + (N - F) \left(\frac{\Lambda^{3N - F}}{\det M} \right)^{\frac{1}{N - F}}$$

• F = N - 1: WZ model on mesonic space (no SYM sector)

Pirsa: 19080058

$$W = m \operatorname{Tr} M + (N - F) \left(\frac{\Lambda^{3N - F}}{\det M} \right)^{\frac{1}{N - F}}$$

- F = N 1: WZ model on mesonic space (no SYM sector)
- F < N-1: unbroken SU(N-F) SYM on mesonic space

$$\Lambda_{\text{unbroken}}^{3(N-F)} = \frac{\Lambda^{3N-F}}{\det M} \qquad \qquad W_{\text{unbroken}} = (N-F) \left(\Lambda_{\text{unbroken}}^{3(N-F)}\right)^{1/(N-F)}$$

Multivaluedness of $W_{\rm ADS}$ from N-F vacua of unbroken gauge theory $\Rightarrow N-F$ sheets over each point on mesonic space

Size of walls:
$$\ell_{\rm WZ} \sim \frac{M}{\partial_x M} \sim \frac{1}{m_{4d}} \quad \gg \quad \ell_{SYM} \sim \frac{1}{\Lambda_{\rm unbroken}} \sim \frac{1}{m_{4d}^{F/3N} \Lambda^{1-F/3N}}$$

"Hybrid" SQCD walls

Hybrid walls: WZ type + "instantaneous" jumps from one sheet to another

X

★ 3D theory:

AV topological sector associated to jump Δ in unbroken SYM

$$\mathcal{N} = 1$$
 $U(\Delta)_{N-F-\frac{\Delta}{2}, N-F}$

Goldstone bosons for broken flavor symmetry NLSM

Pirsa: 19080058

Results

The various walls can be studied:

- algebraically for $M(x) \propto \mathbb{1}_F$
- numerically

 \star E.g. at small N:

$$SU(2)$$
 $F=1$ $k=1: {\sf gap, gap}$

$$SU(3) \quad F=2 \quad k=1: \text{gap}, \mathbb{P}^1$$

$$F=1 \quad k=1: U(1)_2, \text{gap}$$

★ All cases analyzed match with 3D prediction

Some generalizations

★ 4D SU(N) SQCD with F = N flavors

[in progress]

- ullet Baryons $B=Q^N$ $\widetilde{B}=\widetilde{Q}^N$ enter into play
- $\bullet \ \, {\sf Deformed moduli space} \qquad \det M B\widetilde{B} = \Lambda^{2N}$

[Seiberg 94]

3D theory at $m_{\text{(3d)}} < 0 \quad \Rightarrow \quad U(1)_0 \, \times \, \text{NLSM} \, \, \frac{U(N)}{U(J) \times U(N-J)}$

Some DWs spontaneously break baryonic symmetry (3D top. symm.)

 \star 4D SU(2) SQCD with 2 flavors

 \longrightarrow 3D $\mathcal{N}=1$ $U(1)_1$ with 2 fundamentals

Enhanced $\mathcal{N} = 5$ SUSY ?

[Evtikhiev 17; Garozzo, Lo Monaco, Mekareeya, Sacchi 19]

Some generalizations

4D SU(N) SQCD with F = N flavors

[in progress]

- ullet Baryons $B=Q^N$ $\widetilde{B}=\widetilde{Q}^N$ enter into play
- Deformed moduli space $\det M B\widetilde{B} = \Lambda^{2N}$

[Seiberg 94]

3D theory at $m_{\text{(3d)}} < 0 \quad \Rightarrow \quad U(1)_0 \, \times \, \text{NLSM} \, \, \frac{U(N)}{U(J) \times U(N-J)}$

Some DWs spontaneously break baryonic symmetry (3D top. symm.)

 \star 4D SU(2) SQCD with 2 flavors

 \longrightarrow 3D $\mathcal{N}=1$ $U(1)_1$ with 2 fundamentals

Enhanced $\mathcal{N} = 5$ SUSY ?

[Evtikhiev 17; Garozzo, Lo Monaco, Mekareeya, Sacchi 19]

4D Sp(N) SQCD with F < N+1 or F = N+1 flavors

- Similar results: F = 0: TQFT $Sp(k)_{N+1-k}$
 - ullet F>0: $\mathcal{N}=1$ $Sp(k)_{N-\frac{F+k-3}{2}}$ with F fund. and \mathcal{W}

Summary

- ullet Proposed 3D description of DWs in 4D SU(N) SQCD with $F \leq N$ flavors
- ullet Predicts $2^{
 m nd}$ order phase transition for $m_{4d}=m_*$ and intricate zoo of walls
- Predicts supersymmetry enhancement
- ullet Large and small m_{4d} limits reproduced by 4D QFT arguments

Some open questions

- More flavors: F > N (baryons, Seiberg duality, . . .) [FB, Benvenuti, Bertolini, Spezzati: in progress]
- Other gauge groups (Spin(N), quivers, ...) and representations
- ullet Domain wall junctions: 2D $\mathcal{N}=(0,1)$ [cfr. Gaiotto 13]

Pirsa: 19080058 Page 25/25