Title: Symmetries and Dualities of Abelian TQFTs

Speakers: Jaume Gomis

Collection: Boundaries and Defects in Quantum Field Theory

Date: August 06, 2019 - 9:30 AM

URL: http://pirsa.org/19080052

Pirsa: 19080052 Page 1/25

# Symmetries and Dualities of Abelian TQFTs

Jaume Gomis



PI, August 2019

D. Delmastro and J.G., arXiv:1904.12884

Pirsa: 19080052 Page 2/25

### In Memoriam

Before starting I would like to take a moment to remember our colleagues who have tragically passed doing what they loved



Ann Nelson



Steven Gubser

Pirsa: 19080052 Page 3/25

### Introduction

• In this talk we answer the following question:

what are the symmetries of abelian TQFTs?

e.g. what are the symmetries of  $U(1)_k$  Chern-Simons theory?

This foundational physics question is connected with number theory

Pirsa: 19080052 Page 4/25

### Symmetries

- Symmetries play a pivotal role in our description of nature
- In Quantum Mechanics symmetries are implemented in  $\mathcal{H}$  either by
  - unitary
  - anti-unitary  $\Longrightarrow$  time-reversal transformations
- Symmetries are realized by invertible topological <u>defects</u>
- 't Hooft anomalies for global symmetries serve as lamposts for non-perturbative dynamics. They are renormalization group invariants

$$\mathcal{A}_{UV} = \mathcal{A}_{IR}$$

#### Symmetries in QFT

• A sufficient condition for a transformation g to be a symmetry is that

$$g \cdot S = S$$

• If S is invariant, quantum theory obeys Ward identities

$$\langle g \cdot \mathcal{O}_1 \dots g \cdot \mathcal{O}_m \rangle = \begin{cases} \langle \mathcal{O}_1 \dots \mathcal{O}_m \rangle & g \text{ unitary} \\ \langle \mathcal{O}_1 \dots \mathcal{O}_m \rangle^* & g \text{ anti-unitary} \end{cases}$$

• Quantum systems can be endowed by symmetries not visible classically

$$g \cdot S \neq S$$

which nevertheless obey Ward identities

• Such inherently "quantum" symmetries play a prominent role in this talk

#### Motivation

- TQFTs in 2+1d play a central role in physics and mathematics
  - Emergent description of gapped quantum phases of matter, e.g.:
    - ▶ Integer Quantum Hall Effect
    - ▶ Fractional Quantum Hall Effect
    - Topological insulators and superconductors
  - Describe the nonperturbative infrared dynamics of gauge theories:
    - ► CFT
    - ► Gapped phase: TQFT

E.g:

J.G, Komargodski, Seiberg

SU(2) Yang-Mills +  $\psi$  in adjoint  $\Longrightarrow U(1)_2$  + massless fermion

• Supported on domain walls/defects 3 + 1-dimensional gauge theories

Witten,...

• Applications in mathematics: knot invariants, representation theory, ...

Pirsa: 19080052 Page 7/25

- Study of phases of matter with symmetries have lead to a classification schemes of topological phases for matter
- At long wavelength symmetries are realized in the emergent TQFT
  - Symmetries in TQFTs describing trivial gapped phases: SPT phases
  - Symmetries in TQFTs describing nontrivial gapped phases: SET phases
- Very little is known about the symmetries of TQFTs
  - What are the symmetries of a TQFT?
    - What are their 't Hooft anomalies?
- QFTs are subject to non-trivial dualities
  - What are the dualities of TQFTs?

Pirsa: 19080052 Page 8/25

### **TQFT**

• A TQFT specified by Moore-Seiberg data, a MTC  $\mathcal{C}$ . This includes:

• Fusion of anyons:  $\alpha \times \beta = N_{\alpha\beta}^{\gamma} \gamma$ ,  $N_{\alpha\beta}^{\gamma} \in \mathbb{Z}$   $= N_{\alpha\beta}^{\gamma}$ 

Fusion algebra  $\mathcal{A}$ 

- Anyon topological spins:  $\theta(\alpha)$
- Braiding matrix:  $B(\alpha, \beta)$



- [F] and [R] symbols, subject to local isomorphisms/gauge redundancy
- S and T matrices
- Data obeys groupoid relations: i.e. hexagon and pentagon identities

#### Symmetries of a TQFT

- The group of symmetries of a TQFT is the automorphism group  $\operatorname{Aut}(\mathcal{C})$  of the associated MTC
  - A symmetry  $g \in \operatorname{Aut}(\mathcal{C})$  acts as a permutation on the anyons:  $\alpha \to g(\alpha)$
  - Preserves fusion:  $g(\alpha \times \beta) = g(\alpha) \times g(\beta)$
  - If symmetry is unitary, g preserves MTC data, e.g. spin and braiding

$$\theta(g(\alpha)) = \theta(\alpha), \qquad B(g(\alpha), g(\beta)) = B(\alpha, \beta), \dots$$

• If symmetry is anti-unitary, g preserves MTC data up to \*-conjugation

$$\theta(g(\alpha)) = (\theta(\alpha))^*, \qquad B(g(\alpha), g(\beta)) = (B(\alpha, \beta))^*, \dots$$

• Very little is concretely known about the symmetries of TQFTs

#### Abelian TQFTs

• In an abelian TQFT all anyons are invertible  $\leftrightarrow$  fusion rules of  $\mathcal C$  are abelian

$$\forall \alpha \ \exists \ \alpha^{-1} \ \text{s.t.} \ \alpha \times \alpha^{-1} = \mathbf{1}$$

• In an abelian TQFT the entire data is uniquely determined by  $(\mathcal{A}, \theta(\alpha))$  E.g:

$$B(\alpha, \beta) = \frac{\theta(\alpha \times \beta)}{\theta(\alpha)\theta(\beta)}$$

- $\bullet$  In an abelian TQFT the fusion algebra  $\mathcal A$  is a finite abelian group
- In an abelian TQFT a symmetry is an element of  $Aut(\mathcal{A})$  that preserves spin
- Any abelian TQFT admits a description as abelian Chern-Simons theory

$$\mathcal{L}_K = \frac{1}{4\pi} a^T K da$$

• K is an integral, symmetric matrix

# $U(1)_k$ Chern-Simons

• The classical action is

$$\mathcal{L} = \frac{k}{4\pi} a \wedge da$$

- $k \in \mathbb{Z}$
- $Z[T^2] = |k|$
- ▶ Wilson line  $W_{\alpha} = e^{i\alpha \oint a}$  describes the worldline of anyon with spin

$$h_{\alpha} = \frac{\alpha^2}{2k}$$

▶ The braiding phase of anyons  $\alpha$  and  $\beta$  is

$$B(\alpha, \beta) = e^{\frac{2\pi i \alpha \beta}{k}}$$

- $B(\alpha, \alpha) = \theta(\alpha)^2$
- $\theta(\alpha) = e^{2\pi i h_{\alpha}}$  is the topological spin of anyon  $\alpha$
- spin of anyon  $h_{\alpha}$  defined mod 1

• For  $k \in \text{even}$ , there are k distinct anyons:  $\alpha \in \{0, 1, \dots, k-1\}$ 

$$\alpha \times \beta = \alpha + \beta \mod k$$

- ▶ Describes bosonic FQH state:  $\alpha = k$  line realizes the microscopic boson
- ▶ Bosonic TQFT
- $ightharpoonup \mathcal{A} = \mathbb{Z}_k$
- For  $k \in \text{odd}$ , there are 2k distinct anyons:  $\alpha \in \{0, 1, \dots, 2k-1\}$

$$\alpha \times \beta = \alpha + \beta \mod 2k$$

- ▶ The line  $\alpha = k$  is a transparent fermion
- $\nu = 1/k$  Laughlin FQH state:  $\alpha = k$  line realizes the microscopic electron
- ▶ Spin TQFT. Requires a choice of a spin structure
- $ightharpoonup \mathcal{A} = \mathbb{Z}_{2k}$

### Classical symmetries of $U(1)_k$

- $\forall k > 2$ , there is a classical  $\mathbb{Z}_2$  charge conjugation symmetry C
  - ▶ Under  $a \to -a$ , the action is invariant  $S \to S$
  - ightharpoonup C acts as by permuting the anyons

$$C: \alpha \to -\alpha = \begin{cases} k - \alpha & \text{for } k \text{ even} \\ 2k - \alpha & \text{for } k \text{ odd} \end{cases}$$

• Under the action of time-reversal  $T: \begin{cases} a_0 \to a_0 \\ a_i \to -a_i \end{cases}$ ,  $S \to -S$ .  $U(1)_k$  does not admit a "classical" anti-unitary symmetry

#### Questions

- Does  $U(1)_k$  admit "quantum" T-reversal symmetries?
- What is the group of unitary symmetries of  $U(1)_k$ ?

### $U(1)_k$ T-reversal symmetries

• We determine the T-reversal symmetries of  $U(1)_k$  by solving the equations

$$T(\alpha \times \beta) = T(\alpha) \times T(\beta)$$

$$\theta(T(\alpha)) = (\theta(\alpha))^* \iff h_{T(\alpha)} = -h_{\alpha} \mod 1$$

⇒ entire abelian MTC admits an anti-unitary automorphism

bosonic  $U(1)_k$ :  $\nexists$  a T-reversal symmetry

- A necessary condition is that  $\forall \alpha, \exists \text{ an } \beta \text{ with } h_{\alpha} = -h_{\beta} \mod 1$
- Imposing this on the generating line  $\alpha = 1$ , and that k is even, we find that

$$\frac{1+\beta^2}{2k} \neq \mathbb{Z} \qquad \text{QED}$$

# spin $U(1)_k$ :

- k odd:  $\mathcal{A} = \mathbb{Z}_{2k}$ . Anyons labeled by  $\alpha \in \{0, 1, \dots, 2k-1\}$
- $U(1)_k \times \{1, \psi\}$  for k even:  $\mathcal{A} = \mathbb{Z}_k \times \mathbb{Z}_2$ . Anyons labeled by pair  $(\alpha, \beta)$ :

$$\alpha \in \{0, 1, \dots, k-1\}$$

$$\beta \in \{0,1\}$$

with 
$$\psi = (0,1)$$

• Action of fusion homomorphism  $T \in Aut(\mathcal{A})$  fixed by action on generators

$$T: \alpha \to q \alpha$$

$$T: (\alpha, \beta) \to \begin{cases} (q \alpha, \beta) \\ (q \alpha, \alpha + \beta) \end{cases}$$

where  $q \in \mathbb{Z}$ 

• Imposing  $h_{T(\alpha)} = -h_{\alpha} \mod 1$  for the generators of fusion algebra requires that

$$pk - q^2 = 1 \iff \begin{cases} 2pk - q^2 = 1, & k \text{ odd} \\ (2p - 1)k - q^2 = 1, & k \text{ even} \end{cases}$$
 (1)

for  $p, q \in \mathbb{Z}$ 

• If the generators have a T-reversal image, all anyons do

$$h_{T(\alpha)} = \frac{q^2 \alpha^2}{2k} = \frac{(2pk - 1)\alpha^2}{2k} = -\frac{\alpha^2}{2k} \mod 1 = -h_\alpha \mod 1$$

$$h_{T(\alpha,\beta)} = \frac{q^2 \alpha^2}{2k} + \frac{1}{2} (\alpha + \beta)^2 = -\frac{\alpha^2}{2k} + \frac{\beta^2}{2} \mod 1 = -h_{(\alpha,\beta)} \mod 1$$

 $\Longrightarrow$ 

$$U(1)_k$$
 admits a T-reversal transformation iff  $kp - q^2 = 1$ 

$$k = 1, 2, 5, 10, 13, 17, 25, 26, 29, 34, 37, 41, 50, 53, 58, 61, 65, 73, 74, 82, ...$$

#### Summary

• Spin  $U(1)_k$  Chern-Simons is T-invariant if and only if  $k \in \mathbb{T}$ 

$$\mathbb{T} = \{ k \in \mathbb{Z} | kp - q^2 = 1 \text{ for } p, q \in \mathbb{Z} \}$$

- $k \in \mathbb{T}$  if and only if  $k = a^2 + b^2$  for relatively prime  $a, b \in \mathbb{Z}$
- Given the prime factorization of k

$$k = 2^a \left[ \prod_{\pi \equiv 1 \mod 4} \pi^{\alpha} \right] \left[ \prod_{\pi \equiv 3 \mod 4} \pi^{\beta} \right]$$

 $k \in \mathbb{T}$  iff  $\beta = 0$  and  $a \in \{0, 1\}$ . k has only Pythagorean prime factors

- $\mathbb{T} \supset \mathbb{P}$ , where  $\mathbb{P}$  are the solutions of the Pell equation  $kp^2 q^2 = 1$ . Witten showed that when  $k \in \mathbb{P}$ , then  $U(1)_k$  is T-invariant
- T-invariance for  $k \in \mathbb{T}$  can also be proven by a path integral argument

- There are  $2^{\varpi(k)}$  solutions to  $kp-q^2=1\Longrightarrow$  T-reversal transformations  $\varpi(k)=\begin{cases}k\text{ odd}:\text{number of distinct prime factors of }k\\k\text{ even}:\text{number of distinct prime factors of }k/2\end{cases}$ 
  - For  $k \in \mathbb{T} > 2$  the time-reversal algebra is  $\mathbb{Z}_4$ :  $T_i^2 = (-1)^F C$
  - For  $k \in \{1, 2\}$  the time-reversal algebra is  $\mathbb{Z}_2$ :  $T^2 = (-1)^F$

# $U(1)_k$ unitary symmetries

- $\forall k > 2$  there is charge conjugation symmetry
- We determine the unitary symmetries of  $U(1)_k$  by solving the equations

$$U(\alpha \times \beta) = U(\alpha) \times U(\beta)$$

$$\theta(U(\alpha)) = (\theta(\alpha)) \iff h_{U(\alpha)} = h_{\alpha} \mod 1$$

•  $U(1)_k$  has a unitary symmetry, which must act as  $U: \alpha \to q \alpha$ , iff

$$2kp + q^2 = 1$$

- The group of unitary symmetries of  $U(1)_k$  is  $(\mathbb{Z}_2)^{\varpi(k)}$ e.g.  $U(1)_{12}$  has a quantum symmetry acting as  $\alpha \to \pm 5\alpha$
- The time-reversal transformations we found earlier can be written:  $T_i = TU_i$
- Spin  $U(1)_k$  has extra  $\mathbb{Z}_2$  symmetry compared to bosonic  $U(1)_k$  when k=8n

### Symmetries of K-matrix Chern-Simons

• The classical action is

$$\mathcal{L} = \frac{1}{4\pi} a^T K \wedge da$$

- ightharpoonup K is an integral, symmetric matrix
- $Z[T^2] = |\det(K)|$
- ▶ Charges of anyons take values in the lattice  $\mathbb{Z}^n/(K\mathbb{Z})^n$

$$h_{\alpha} = \frac{1}{2} \alpha^T K^{-1} \alpha$$

- Anyon fusion:  $\alpha \times \beta = \alpha + \beta \mod K$
- ▶ The braiding phase of anyons  $\alpha$  and  $\beta$  is

$$B(\alpha, \beta) = e^{2\pi i \alpha^T K^{-1} \beta}$$

ightharpoonup Theory is bosonic for K even and spin for K odd

### Symmetries

• The most general fusion homomorphism is

$$T: \alpha \to Q \alpha$$

where Q is an  $n \times n$  integral matrix

- This homomorphism is a symmetry of TQFT iff
  - There are solutions to the equation

$$P \pm Q^T K^{-1} Q = K^{-1}$$

for Q, P integral matrices

- ullet Q is invertible modulo K over the integers
  - ▶ Solutions with P = 0 are classical symmetries
  - ▶ Solutions with  $P \neq 0$  are "quantum" symmetries
  - ▶ Equations have a rich arithmetic

# Examples

•  $(\mathbb{Z}_{k_1})_{k_2}$  twisted gauge theory. Described by

$$K = \begin{pmatrix} 0 & k_1 \\ k_1 & k_2 \end{pmatrix}$$

•  $(\mathbb{Z}_{k_1})_{k_2}$  is T-invariant iff

$$k_2 \in \mu(k_1)\mathbb{Z}$$

where

$$\mu(a) = \frac{a}{\text{Pythagorean prime factors of a}}$$

• Symmetry groups

| k | $Aut((\mathbb{Z}_k)_0)$    | $Aut_U((\mathbb{Z}_k)_0)$ | $Aut((\mathbb{Z}_k)_{\mu(k)})$ | $Aut_U((\mathbb{Z}_k)_{\mu(k)})$ |
|---|----------------------------|---------------------------|--------------------------------|----------------------------------|
| 2 | $\mathbb{Z}_2^2$           | $\mathbb{Z}_2$            | $\mathbb{Z}_2$                 | 0                                |
| 3 | $D_8$                      | $\mathbb{Z}_2^2$          | $D_8$                          | $\mathbb{Z}_2^2$                 |
| 4 | $D_8$                      | $\mathbb{Z}_2^{ar{2}}$    | $D_8$                          | $\mathbb{Z}_2^{\overline{2}}$    |
| 5 | $\mathbb{Z}_4 \circ D_8$   | $D_8$                     | $\mathbb{Z}_4$                 | $\mathbb{Z}_2$                   |
| 6 | $\mathbb{Z}_2 \times D_8$  | $\mathbb{Z}_2^3$          | $D_8$                          | $\mathbb{Z}_2^2$                 |
| 7 | $\mathbb{Z}_3 \rtimes D_8$ | $D_{12}$                  | $\mathbb{Z}_3 \rtimes D_8$     | $D_{12}$                         |
| 8 | $\mathbb{Z}_2 \times D_8$  | $\mathbb{Z}_2^3$          | $\mathbb{Z}_2 \times D_8$      | $\mathbb{Z}_2^3$                 |

#### **Dualities**

- We developed a criterion to determine dual TQFT's, extending celebrated level/rank dualities
- $CS[K_1] \longleftrightarrow CS[K_2]$  if and only if

$$P + Q^T K_1^{-1} Q = K_2^{-1}$$

for Q, P integral matrices

- Solutions with  $P \neq 0$  yield nontrivial dualities
- Examples:

$$(\mathbb{Z}_7)_2 \quad \leftrightarrow \quad (\mathbb{Z}_7)_4$$

$$(\mathbb{Z}_7)_3 \quad \leftrightarrow \quad (\mathbb{Z}_7)_5$$

#### Conclusions

• We have determined the unitary and anti-unitary symmetries of TQFTs

Plethora of "quantum" symmetries

- Found many new TQFT dualities
- Interesting problems for the future include
  - Classification of associated 't Hooft anomalies
  - Constructing anomaly indicators

• ...

Still leaning new and elementary facts about TQFTs!

Pirsa: 19080052 Page 25/25