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Abstract: As quantum processors become increasingly refined, benchmarking them in useful ways becomes a critical topic. Traditional approaches
to quantum tomography, such as state tomography, suffer from self-consistency problems, requiring either perfectly pre-calibrated operations or
measurements. This problem has recently been tackled by explicitly self-consistent protocols such as randomized benchmarking, robust phase
estimation, and gate set tomography (GST). An undesired side-effect of self-consistency is the presence of gauge degrees of freedom, arising from
the lack fiducial reference frames, and leading to large families of gauge-equivalent descriptions of a quantum gate set which are difficult to
interpret.

We solve this problem through introducing a gauge-free representation of a quantum gate set inspired by linear inversion GST. This alows for the
efficient computation of any experimental frequency without a gauge fixing procedure. We use this approach to implement a Bayesian version of
GST using the particle filter approach, which was previously not possible due to the gauge.

Within Bayesian GST, the prior information allows for inference on tomographically incomplete data sets, such as Ramsey experiments, without
giving up self-consistency. We demonstrate the stability and generality of both our gauge-free representation and Bayesian GST by simulating a
number of common characterization protocols, such as randomized benchmarking, as well characterizing a trapped-ion qubit using experimental
data.
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Quantum state tomography

Given an unknown qubit state, how do we learn what it is?

We can reconstruct a state by taking an informationally complete
set of measurements.
0)

Measure:

Pirsa: 19070074 Page 3/38



QCVV: quantum characterization, verification, and validation

In the age of noisy quantum computers, it is important to
characterize the behaviour of our quantum hardware.

Traditional quantum state and process tomography are done with
very strong underlying assumptions:
&

m state tomography assumes measurements are perfect

m process tomography assumes initial states preparation and
measurements are perfect
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QCVV: quantum characterization, verification, and validation

No - in real physical systems, State Preparation And Measurement
(SPAM) are also noisy processes!

The results from our tomographic processes will not be consistent
with each other, or with the true behaviour of the system.

So then... is there another means of learning about our system?
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Gate set tomography (GST)

Treat everything we can do to our quantum system equally.

™

Learn about SPAM at the same time as the other processes we

want to characterize.

Merkel, S. T., et al. (2013). Self-consistent quantum process tomography. Physical Review A, 87(6).
Blume-Kohout, R., Gamble, J. K., Nielsen, E., Mizrahi, J., Sterk, J. D., & Maunz, P. (2013). Robust,

self-consistent, closed-form tomography of quantum logic gates on a trapped jon qubit,
http://arxiv.org/abs/1310.4492
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Gate set tomography (GST)

Mathematically, we will represent every button as a superoperator -
our initial task will be to learn their contents.
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Important assumption: a button has the same action (i.e. same
superoperator) every time it is pressed.

How do we learn our superoperators?
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GST experiments

By pushing a bunch of buttons chosen in a clever way.

GST experiments take the following form:

N ONCOHONORO)

Experiments are performed multiple times - we record the
frequency with which the light turned on.
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Linear-inversion GST

@
=)

We can reconstruct the
superoperators by using the
outcome frequencies from a
variety of experiments.
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But wait... we know nothing
about the system; we have only
the assumption that each button
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performs the same action
whenever it's pressed.

Pirsa: 19070074 Page 9/38



Pirsa: 19070074

Linear-inversion GST

We perform GST with respect to
a set of fiducial experiments, or
fiducial sequences.

These are short sequences of only
one or two button presses that

gives us a point of reference.

The set of fiducial sequences
must be informationally complete
(more on this in a minute!)
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Linear-inversion GST

We perform experiments using the fiducial sequences to construct

a set of objects:
E.

@0 >

@00
@0©O®
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Linear-inversion GST

. ~ (K .
The matrix elements E;, Fj;, GU(' ) represent sequence probabilities -
they can be calculated analytically from the superoperators using

Born's rule.

For example, consider the experiment:

 JONCRORCRO)

The probability that the light turns on is

((E|G3G1G2Gr|p)) = Tr(|p)((E|G3G1G2G)
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Linear-inversion GST

Repeatedly run the experiments for the fiducial sequences, and
look at the frequency with which the light turned on.

OX X0
L X MO
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OX Y NO)
X X NO)
CX X NO)

Use the obtained frequencies to populate E, F. and {G(k) b

Experiment
e

)
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Fiducial sequence

Counts
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Linear-inversion GST

In principle, we can perform linear inversion to obtain our

1)), |EY), {Gi) from the E, F, {GW)}:

E = ((EIFin) (E|B

ET
_Fi= (EIRFL) = FLE = BY|p))
G = ((E|FiGkFilp)) F-

1 ~(k ~1
; (k) = B~1G,B
We can learn our superoperators up to some additional linear
transformation B. For this to work out analytically, Bjj = (Fj|p)))i.

This is where we can define ‘informationally complete’ - we need to
choose the fiducials so that F is invertible (and for a single qubit,
there must be four of them)!
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Linear-inversion gate set tomography

But there's a problem... Recall the Born rule and the sequence
probability. We want to learn p, E, {Gx}, but after linear
inversion we have expressions for them up to some matrix B.

B is not accessible experimentally!

Tr ([P ((E[Gs, -+ Gs,) = Tr (B |p))(E|IBB ™ Gy, B--- B Gy B)

The sequence probability doesn’t change with the inclusion of B.
B is a unknown gauge transformation.
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Gauge freedom in gate set tomography

If we can't access B, we don't know the ‘true’ superoperators, we
only learn one set in their gauge orbit. Superoperators are a
gauge-dependent quantity.

G © ©
@ ©®

Pirsa: 19070074 Page 16/38



Gauge freedom in gate set tomography

Option 1: Gauge-fixing.
Run a computational procedure to find a B that makes your
superoperators close to what you think they should be.

Issues:
m May be computationally costly

m Requires assumptions about the action of the buttons

Option 2: Work with gauge-independent quantities instead.
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An operational representation

Recall the sequence probabilities we obtained from experiment:

E = (EIFl)
Fi = (EIFF)

Gk

Iy

((E|FiGkFjlp))

= (k)

These quantities, and consequently £, F, and G(K), are

gauge-independent.
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An operational representation

Furthermore, we can use them in the general expression to
compute arbitrary sequence probabilities...

Pr(light) Tr(|p))((E|Gs, - - - Gs,)
5 o) (E188716, 5. 5716, )

Tr
r(F 5 G,;,,iB-va "GSIB)

(
(¢
r(;

If we can learn 1:: l—: and GN(M, we can predict the outcome of any
future experiment! We call them the operational representation.
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Bayesian inference for the operational representation

But how do we actually go about learning it from the data?

We will use Bayesian inference. Bayes rule tells us that:

Pr(model | data) o Pr(data | model) - Pr(model)

We will create a prior distribution of a large number of
hypothetical versions of E, F, and G(k), and then perform
Bayesian updates using data to obtain a posterior distribution.

We call this operational quantum tomography (OQT).
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Bayesian inference for the operational representation

Hy polhvtﬂ‘al
B, F {G#*)}
Prior distribution
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Example: Ramsey interferometry

The Rabi oscillation frequency (w) tells us the likelihood of a qubit
being in either |0) or 1) in the presence of a driving field.

Single-qubit operations are often implemented by applying EM
pulses to induce rotations around the Bloch sphere. Knowing the
Rabi frequency helps us select the pulse duration that performs a
desired operation. We can learn it using Ramsey interferometry:

_ hQ hw

Fiw
H =0,
prepare £ measure

evolve for time t
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OQT for Ramsey interferometry

We can express Ramsey
interferometry in the OQT
formalism to help us learn the
oscillation frequency.

We'll have to ‘discretize’ time to
represent it as a button press.
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OQT for Ramsey interferometry

The full experiment then looks something like this:

_ hQ2 hw
H = ng'zr+ -;Jz

O ®w oo - ©® & W
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OQT for Ramsey interferometry

The OQT process for Ramsey interferometry consists of the
following steps:

1. Choose a prior distribution for what we think the operational
representations should look like.

It's not obvious what properties an arbitrary operational
representation should have, except it should contain all
positive numbers.

Instead, we choose a prior over the superoperators, e.g.

R, (g) — Ry (g+(). ¢ EN(O.(.TQ)

and use these to later convert to the gauge-independent form.
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OQT for Ramsey interferometry

2. Choose a set of fiducial sequences.

This can be done using trial and error to see what ‘works’, i.e

makes F invertible.

o &
®~ ®

An ‘empty’ fiducial indicates an experiment where we perform

only SPAM.
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OQT for Ramsey interferometry

3. Initialize a particle cloud with many hypothetical operational
representations.

Sample superoperators from their priors. In the following
example, we initialize a cloud of 20000 particles under the
following assumptions:

m State preparation creates a depolarized! |0) with \ € [0.8, 1]

Measurement is a depolarized |0) with A € [0.8,1]

m
m R.(%) pulled from R (5 +¢€), € N(0,1073)
m

At pulled from R,(w - dt), we[0,1], dt =1

Combine and use the fiducial sequences to compute E, F, and

G k) for each individual sample.

'The depolarizing channel sends p — Ap + %JL
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OQT for Ramsey interferometry

4. Perform Bayesian inference

Using either true experimental data, or simulated data,

perform a series of experiments of the following form:

0@ @&

We performed simulated experiments with a ‘true’ gateset
sampled from our prior.

Perform Ramsey experiments consisting of n presses of At, n

from 2 to 50, and update the particle cloud of hypothetical
operational representations according to Bayes' rule?.

*We used Sequential Monte Carlo techniques to do this.
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OQT for Ramsey interferometry

5. Assess the quality of our reconstruction.

We use a prediction loss: for true probability ps and estimated
probability ps, the loss is given by

Loss(ps. bs) = (Ps — P5)2

Ramsey interferometry likelihood vs sequence length - Ramsey interferometry prediction loss
0.000 14

= Train/Test
0.00012

0.00010

— True 0.00008
Posterior

Train/Test 000006

0.00004
000002

\ \ ™
0.00000 ) s o/ v N v

20 40 60 80 20 40 [314] 80
Number of dt button presses Number of dt button presses
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OQT for Ramsey interferometry

The curves shown above are for a mean operational representation
computed over the whole posterior. In fact, each particle in the
posterior gives a slightly different trajectory.

Posterior trajectories for trained Ramsey model

- Train/Test

Prob. of getting 0

200 300
Number of dt button presses
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OQT for Ramsey interferometry

Why is this interesting?

Ramsey interferometry is not something that can be addressed
using standard GST techniques.

We find in general that OQT is applicable to a broad array of
characterization tasks.

So far we have also successfully performed:
m Quantum state tomography
m Quantum process tomography (with simulated and real data)

m Randomized benchmarking
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OQT for experimental trapped-ion qubit data

Long-sequence gate set tomography: take linear-inversion GST as
a starting point, perform additional experiments and update
estimates using maximum likelihood techniques.

- -li
Linear CTarget gate :-;(_'l) Maximum-likelihood
' ( Linear inversion ) 51

TP-constrained
Y E R ol Max likelihood gauge
( Gauge oplimization ) Minimum X2 astimation optimization
i estimation 4

¥
( CPTP contraction )

( Gate set estimate

Iterative improvement

G0t 00— o

Fiducial

(Germ)*

Fiducial
it of G, repetitions (k)
Image: Blume-Kohout, R., Gamble, J. K., Nielsen, E., Rudinger, K., Mizrahi, J., Fortier, K., & Maunz, P. (2017).

Demaonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography. Nature
Communications, 8, 14485,
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OQT for experimental trapped-ion qubit data

We perform OQT using the same experimental data and same
sequence of experiments as performed in long-sequence GST.

A
G G @

Experimental operations will be noisy versions of:

m G;, the identity gate
Gy, a

rotation about x

i o=

Gy, a 5 rotation about y

=

m

m preparing the state |0)

m measurement in the computational basis
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OQT for experimental trapped-ion qubit data

Used a gauge-fixed copy of the superoperators obtained in
long-sequence GST to inform our choice of prior.

We added trace-preserving Ginibre noise to over-rotated versions of

the superoperators, i.e.

Gy (g) — Gy (g +<’) + g(0?).e € N(0,107?)

goe?)=1" " 7 |, xeN(0,07
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OQT for experimental trapped-ion qubit data

Take only valid® operational representations sampled from:
m G — 1+ g(1073)

Gx (5) = Gx (% +¢) +g(107%), e € N(1073)

Gy (5) = Gy (5 +¢) +8(107%). ¢ € N(1077)

i
i
m preparing the state |0)
m

measurement in the computational basis

3 . A i . .
With the Ginibre noise, sometimes the sequence ‘probabilities’ end up
being negative, so we remove these.

Pirsa: 19070074 Page 35/38



OQT for experimental trapped-ion qubit data

We find that our results are competitive with existing techniques!

Sequence probability vs. number of Gi button presses VD from experimental data

- 0QT
—— |deal
pyGSTi
Experiment

)
o 00O =

04

107

Power (Gl) Tk ‘ower (G1) 7k

Sequence probability vs. number of Gy button presses TVD from experimental data

Power (Gy Power (Gy)
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Conclusions and future work

Operational tomography allows us to characterize and learn about
a wide variety of quantum systems.

Learning the operational representation allows us to predict the
outcome of future experiments in a way that is independent of the

gauge-related difficulties suffered by other procedures.

Next steps for OQT:
m Scaling up to multi-qubit systems

m Multi-state / multi-measurement cases
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