Title: Quantum scale anomaly and spatial coherence in a 2D Fermi superfluid

Speakers: Nicolo Defenu

Collection: Machine Learning for Quantum Design

Date: July 09, 2019 - 4:00 PM

URL: http://pirsa.org/19070028

Abstract: Quantum anomalies are violations of classical scaling symmetries caused by quantum fluctuations. Although they appear prominently in quantum field theory to regularize divergent physical quanti- ties, their influence on experimental observables is difficult to discern. Here, we discovered a striking manifestation of a quantum anomaly in the momentum-space dynamics of a 2D Fermi superfluid of ultracold atoms. We measured the position and pair momentum distribution of the superfluid during a breathing mode cycle for different interaction strengths across the BEC-BCS crossover. Whereas the system exhibits self-similar evolution in the weakly interacting BEC and BCS limits, we found a violation in the strongly interacting regime. The signature of scale-invariance breaking is enhanced in the first-order coherence function. In particular, the power-law exponents that char- acterize long-range phase correlations in the system are modified due to this effect, indicating that the quantum anomaly has a significant influence on the critical properties of 2D superfluids.

Quantum anomaly and scaling dynamics in the 2D Fermi gas

Nicolò Defenu (University of Heidelberg)

Tilman Enss (Heidelberg, theory) S. Jochim group (Heidelberg, expt)

MACHINE LEARNING FOR QUANTUM DESIGN

Perimeter Institute Waterloo, 09 July 2019

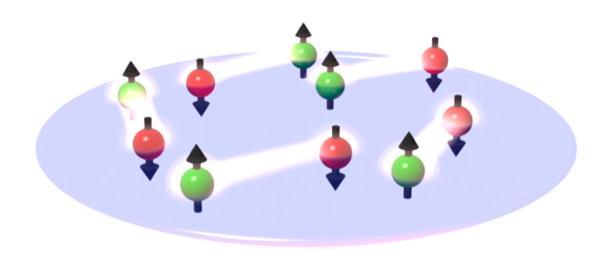
A UNIFYING APPROACH TO EMERGENT PHENOMENA IN THE PHYSICAL WORLD, MATHEMATICS, AND COMPLEX DATA

Excellence Cluster

University of Heidelberg

Heidelberg I did it!

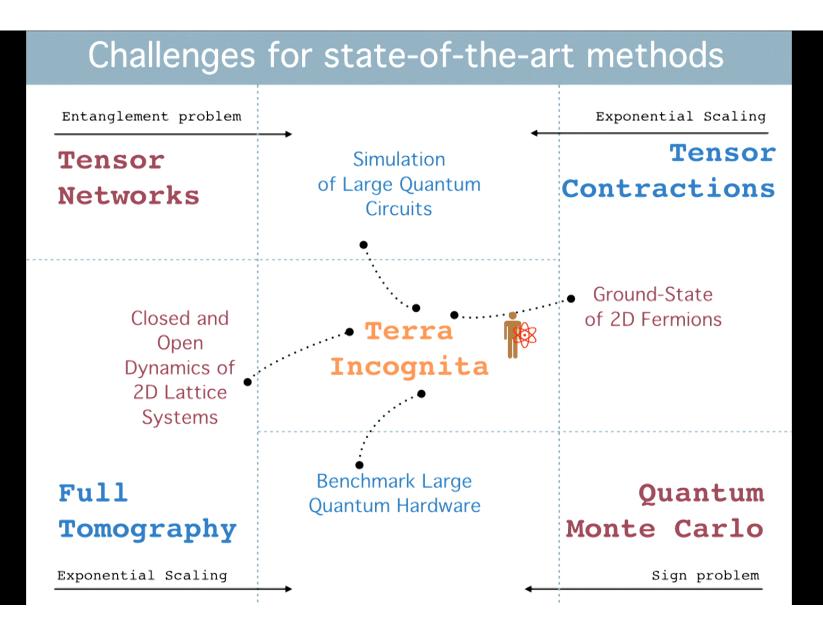
2D Fermi gas



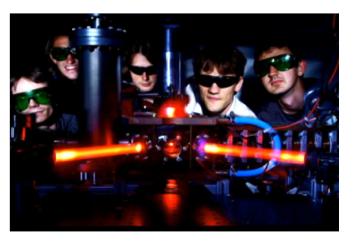
dilute gas of \uparrow and \downarrow fermions with contact interaction:

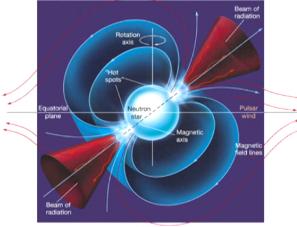
$$\mathcal{H} = \int d\mathbf{x} \sum_{\sigma=\uparrow,\downarrow} \psi_{\sigma}^{\dagger} \Big(-\frac{\hbar^2 \nabla^2}{2m} - \mu_{\sigma} \Big) \psi_{\sigma} + g_0 \psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} \psi_{\downarrow} \psi_{\uparrow} \psi_{\uparrow} \psi_{\downarrow} \psi_{\uparrow} \psi_{\downarrow} \psi_{\uparrow} \psi_{\downarrow} \psi_{\downarrow} \psi_{\uparrow} \psi_{\downarrow} \psi_{\downarrow} \psi_{\uparrow} \psi_{\downarrow} \psi_{$$

Levinsen & Parish Annu. Rev. CMP 2015



- self-similar on different length scales: no intrinsic length/energy scale
- statistical mechanics: near phase transition, fluctuations on all length scales
 no intrinsic scale
- strongly interacting Fermi gas similar in cold atom lab (μm) and neutron star (fm)





Copyright © 2005 Pearson Prentice Hall, Inc.

ideal gas

$$H = rac{oldsymbol{p}^2}{2m}\,, \qquad \psi(oldsymbol{x}) = e^{ioldsymbol{k}\cdotoldsymbol{x}}$$

• rescale space by factor
$$\lambda$$
:

0.5

· solution self-similar with

$$oldsymbol{k}\mapsto rac{1}{\lambda}oldsymbol{k}$$
 :

 $oldsymbol{x}\mapsto\lambdaoldsymbol{x}$

$$e^{i\frac{\boldsymbol{k}}{\lambda}\cdot\lambda\boldsymbol{x}} = e^{i\boldsymbol{k}\cdot\boldsymbol{x}}$$

· Hamiltonian scales as

$$H \mapsto \frac{1}{\lambda^2} H$$

particles with interaction

$$H = \sum_{i} \frac{\boldsymbol{p}_{i}^{2}}{2m} + \frac{1}{2} \sum_{i \neq j} V(\boldsymbol{x}_{i} - \boldsymbol{x}_{j})$$

consider power-law interaction

$$V(\boldsymbol{x}) = \frac{g}{|\boldsymbol{x}|^{\alpha}}, \qquad V(\lambda \boldsymbol{x}) = \frac{1}{\lambda^{\alpha}} V(\boldsymbol{x})$$
• scaling law
$$H \mapsto \frac{1}{\lambda^{2}} H_{\text{kin}} + \frac{1}{\lambda^{\alpha}} H_{\text{int}} \stackrel{!}{=} \frac{1}{\lambda^{2}} H \stackrel{-1}{\overset{-}}{\overset{-1}{\overset{-1}{\overset{-1}{\overset{-1}{\overset{-1}{\overset{-1}{\overset{$$

scale invariant only for inverse square potential $\alpha=2$ (not often realized)

particles with interaction

$$H = \sum_{i} rac{oldsymbol{p}_i^2}{2m} + rac{1}{2} \sum_{i
eq j} V(oldsymbol{x}_i - oldsymbol{x}_j)$$

contact interaction

$$V(\boldsymbol{x}) = g\delta(x)\delta(y)\cdots$$
$$V(\lambda \boldsymbol{x}) = \frac{1}{\lambda^d}V(\boldsymbol{x}) \text{ since } \delta(\lambda x) = \frac{1}{\lambda}\delta(x)$$

scaling law

$$H \mapsto \frac{1}{\lambda^2} H_{\text{kin}} + \frac{1}{\lambda^d} H_{\text{int}} \stackrel{!}{=} \frac{1}{\lambda^2} H$$

scale invariant in d=2 dimensions for any dimensionless coupling g no intrinsic scale: kinetic and interaction equally important on any scale

Dynamical scaling

- time dependent harmonic oscillator (oscillator length $\ell_{
m osc}=\sqrt{\hbar/m\omega}$)

$$H = \frac{p^2}{2m} + \frac{m}{2}\omega^2(t)x^2$$

• stationary initial state $\psi(x, t = 0)$, impose potential $\omega(t)$: dynamical scaling solution •

$$\psi(x,t) = \frac{1}{\lambda^{1/2}} \psi\left(\frac{x}{\lambda}, t=0\right) \exp\left(i\frac{m\lambda}{\hbar\lambda}x^2\right) e^{i\theta}$$

· density profile

$$n(x,t) = |\psi(x,t)|^2 = \frac{1}{\lambda} n\left(\frac{x}{\lambda}, t=0\right)$$

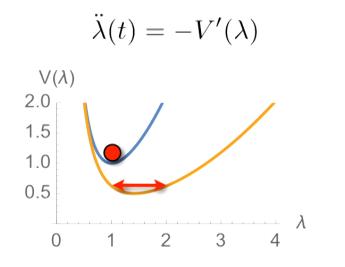
self-s

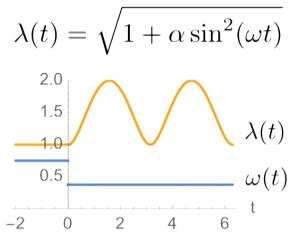
Dynamical scaling

• global scale factor $\lambda(t)$ governed by Ermakov equation

$$\ddot{\lambda}(t) + \omega^2(t)\lambda(t) = \frac{\omega^2(0)}{\lambda^3(t)}, \quad \lambda(0) = 1, \ \dot{\lambda}(0) = 0$$

• quantum time evolution determined by motion of "classical particle" λ :





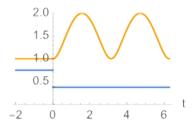
periodic breathing motion at $\omega_{\rm b}=2\omega$

Dynamical scaling

• interacting many-body system with scale invariance: $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_N)$

$$\psi(\mathbf{X},t) = \frac{1}{\lambda^{Nd/2}} \psi\left(\frac{\mathbf{X}}{\lambda}, t = 0\right) \exp\left(i\frac{m\lambda}{\hbar\lambda}\mathbf{X}^2\right) e^{i\theta}$$

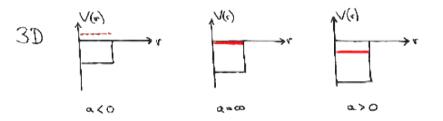
- exact many-body wavefunction known at all later times
- no equilibration/thermalization: dissipationless hydrodynamics ζ=0 (entropy const.)

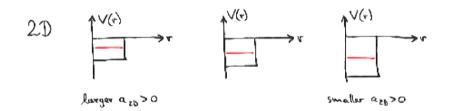


- hidden symmetry SO(2,1) generates many-body spectrum [Pitaevskii & Rosch 1997; Werner & Castin 2006]
- realized exactly in Unitary Fermi gas (a → ∞ no scale) [Werner; expt. challenging] approx. in 1D/2D Bose gas [Pitaevskii; Olshanii; expt. Bouchoule 2014]
 2D Fermi gas: control scale invariance, study deviations

Quantum anomaly

• quantum mechanical scattering (attractive interaction by potential well)





• always bound state in 2D of size a_{2D} , binding energy scale $\varepsilon_B = \frac{\hbar^2}{ma_{2D}^2}$ breaks classical scale invariance: quantum anomaly

Scattering amplitude

two-body scattering amplitude

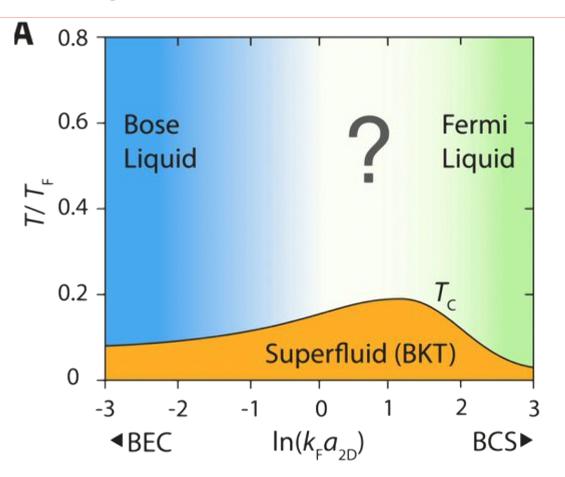
$$f(k) = \frac{2\pi}{i\frac{\pi}{2} - \ln(ka_{2D})}$$

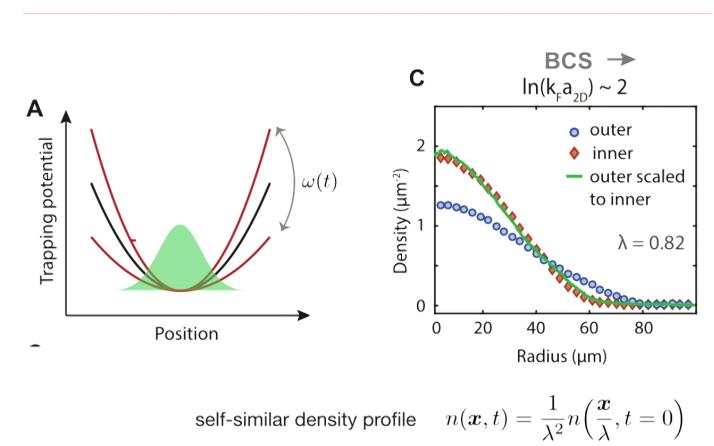
large $ka_{2D} > 1$: see a bound state, attractive small $ka_{2D} < 1$: can't see it, repulsive

how does scattering amplitude depend on scale (zoom out)?

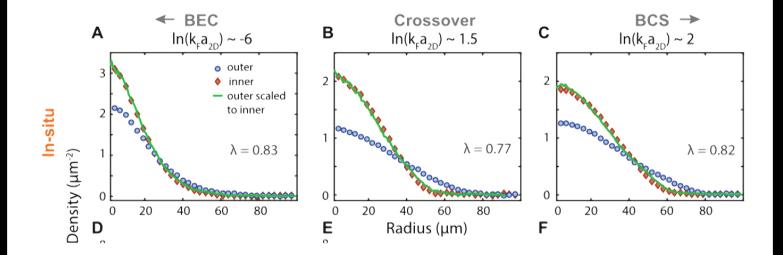
coupling always energy dependent (log. running coupling) Holstein 1993 many-body scale $k=k_F$: interaction parameter $ln(k_Fa_{2D})$

Phase diagram





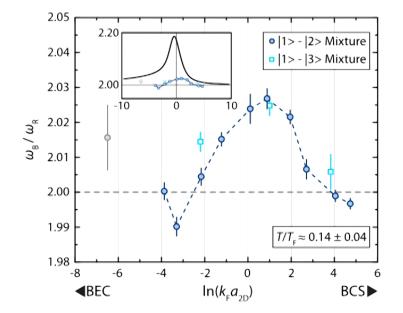
BEC-BCS crossover



· density profiles satisfy scale invariant prediction!

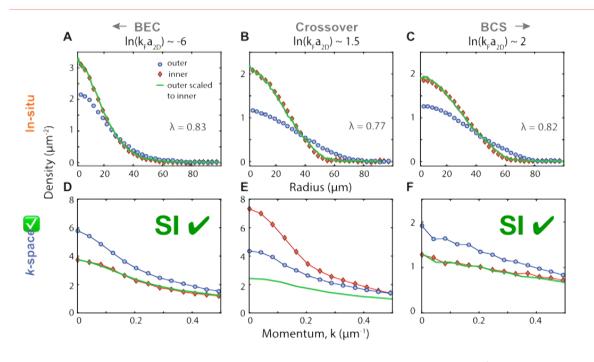
P. A. Murthy, N. Defenu, L. Bayha, M. Holten, P. M. Preiss, T. Enss, S. Jochim, in preparation

• breathing mode frequency $\omega_{\rm b}=2\omega$?



• significant shift of breathing frequency where scale invariance broken

M. Holten, L. Bayha, A. C. Klein, P. A. Murthy, P. M. Preiss, and S. Jochim, arXiv:1803.08879

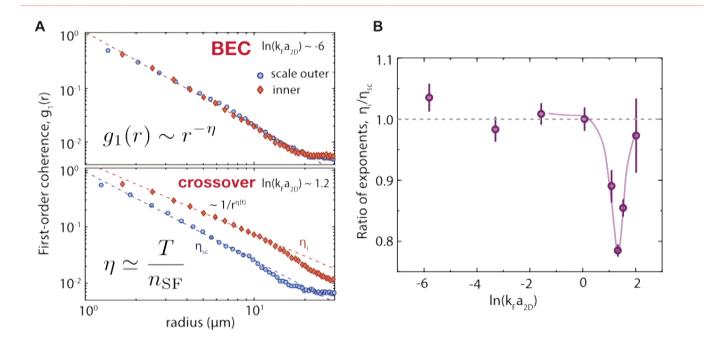


SI: $n(\mathbf{k}, t) = \lambda^2 n(\lambda \mathbf{k}, t = 0)$ at turning points $\dot{\lambda} = 0$

momentum distribution strongly violates scaling prediction in crossover

P. A. Murthy, N. Defenu, L. Bayha, M. Holten, P. M. Preiss, T. Enss, S. Jochim, in preparation

Phase correlations

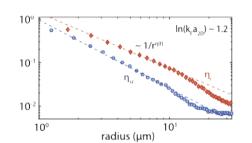


• density scale invariant but superfluid density $n_{\rm SF}$ anomalously enhanced: scale dependence (scaling violation) of critical exponent

P. A. Murthy, N. Defenu, L. Bayha, M. Holten, P. M. Preiss, T. Enss, S. Jochim, in preparation

Conclusion

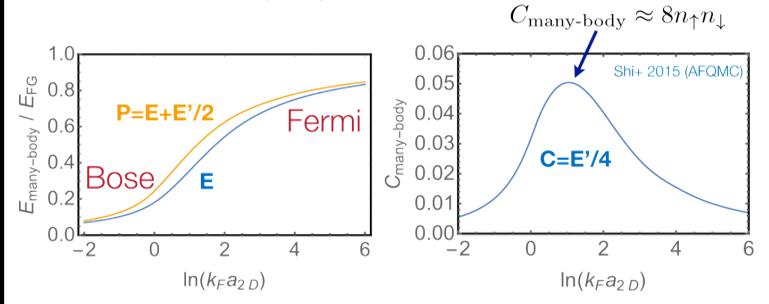
- 2D classical gas scale invariant, exact scaling dynamics
- 2D Fermi gas: quantum anomaly breaks scale invariance
 - density driven crossover from Bose to Fermi
 - Small breathing frequency corrections.
 - ➡Small density profile corrections.
 - ➡'Large' critical properties correction.



 $\ell \approx a_{\rm 2D}$

Local **many-body** correlations

subtract two-body binding energy:



strong local correlation in crossover: quantify scale invariance breaking