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DIMENSIONALITY OF QUANTUM SYSTEMS VS NEURAL MACHINE TRANSLATION

‘(D > vector with 21\/

> Today's best supercomputers can solve the wave equation
exactly for systems with a maximum of ~45 spins.

2N ~ 3.5 x 1013

» Language translation models live in very high dimensional
spaces too (example from Attention is all you need)

~ - Tax length of sentence : y ’ 39(
V()(,‘-E*Ll). blZCI\ 1X ](Ilgl 1 OoF sentence ~ 8000[(]{] ~ 203 >< 10{ )0

Storage of these distributions requires a computer with big memory:
size is bigger than a number of universes bigger than there are atoms in

the known universe.
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QUANTUM STATES, NATURAL IMAGES, NATURAL LANGUAGES ARE “PHYSICAL’

» The amount of information for (W) vector with 2V
quantum states, language QMC Low entanglement
modelling, computer vision, is T MPS and other TN
smaller than the maximum \—_ ]
capacity : ‘ |

» Quantum Monte Carlo and other = ' _|_|_|_|_’—|
numerical methods based on | -
Tensor Networks exploit this fact. ﬁi \

» Both quantum and ML problems Newral

eurd
have a lot of (shared?) structure —

and symmetry that we can ex pl()ir

Tensor netwo }'}{S

N J

Pirsa: 19070025 Page 5/50



EXAMPLE OF A LANGUAGE MODEL (TRANSFORMER)

In a shocking finding, scientist discovered a herd of unicorns living in a remots,

C v unexplore alley, in the Andes Mountains. Even more surprising to the ]np u t
archers the fact that the unicorns

The scientist named the population, after their distinctive horn, Ovid's -
Unicorn. These four=herned, silver-white unicorns were previously unknown L)utpur
to science.

Now, after almost two centuries, the mystery of what sparked this odd
phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biolegist from the University of La Paz, and
several companions, were exploring the Andes Mountains when they found a small
valley, with no other animals or humans. Pérez noticed that the valley had
what appeared to be a natural fountain, surrounded by two peaks of rock and

silver snow. generating samples from a

variety of inputs —>close to
Pérez and the others then ventured further into the valley. "By the time we - .
the water looked blue, with seme crystals on human quahty and IOHg*IHDgQ

t " said > 4
e coherence over a page or

Pérez and his friends were astonished to see the unicorn herd. These creatures more Of text
could be seen from the air without having to move too much to see them = they
were so close they could touch their horns.

While examining these bizarre creatures the scientists discovered that the
creatures also spoke some fairly regular English. Pérez stated, "We can see,
for example, that they have a common ‘language,’ something like a dialect

or dialectic.” Strong correlation (power law)

. Pérez belicves that the unicerns may have originated in Argentina, where
the animals were believed to be descendants of a lost race of le who lived

P(output text|input text)

Pirsa: 19070025 Page 6/50



LANGUAGE TRANSLATION

> Language translation P (English|Spanish)

Input
Utilizando la base de datos Epistemonikos, la cual es mantenida mediante busquedas realizadas en 30
bases de datos, identificamos seis revisiones sistemnadticas que en conjunto incluyen 36 estudios

aleatorizados pertinentes a la pregunta.

Output
Using the Epistemonikos database, which is maintained through searches in 30 databases. we identified six
systematic reviews that altogether include 36 randomized studies relevant to the question.

Neural Machine Translation with the Transformer and Multi-Source Romance Languages for the Biomedical WMT

2018 task. Brian Tubay and Marta R. Costa-jussa” (2018)
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COMPUTER VISION: GENERATING NEW IMAGES

Pmmiul (d) —>  Generative adversarial networks

» Understand probability distributions defined over high-
dimensional data like images. Sampling new faces:

https.://arxiv.org/pdi/1812.04948 pdf

https://thispersondoesnotexist.com/
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CAN WE USE THE POWER OF
THESE MODELS TO STUDY
STRONGLY INTERACTING
QUANTUM SYSTEMS?
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THERE IS AN INTRICATE RISTORY OF EXCHANGE BETWEEN FIELDS

Physics Machine learning

Ising models Boltzmann machines

Restricted Boltzmann machine

|D€€p Boltzmann machinel
Neural network

Inspired wavefunctions Convolutional neural networks

Stat. Mech. Problems

Deep learning

ML for Quantum design

Reinforcement learning

Tensor ?Ié’flfl’OFkS

Supervised and unsupervised learning

Wavefunctions Born machine for unsupervised learning

Quantum computing Quantum machine learning

But also quantum inspired ML
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THERE IS AN INTRICATE RISTORY OF EXCHANGE BETWEEN FIELDS

Physics Machine learning

Boltzmann machines

Restricted Boltzmann machine

TR T Deep Boltzmann machine
eural network

Inspired wavefunctions Convolutional neural networks

Deep learning

ML for Quantum design

Reinforcement learning

We have been relatively successful —> transform ML models

and algorithms to make them look like quantum mechanics.
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CAN WE MAKE QUANTUM
THEORY LOOK MORE LIKE
MACHINE LEARNING/STATS
INSTEAD?
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FEYNMAN 1981:

Simulating Physics with Computers

Richard P. Feynman

5. CAN QUANTUM SYSTEMS BE PROBABILISTICALLY
SIMULATED BY A CLASSICAL COMPUTER?

Now the next question that I would like to bring up is, of course, the
interesting one, i.c., Can a quantum system be probabilistically simulated by
a classical (probabilistic, I'd assume) universal computer? In other words, a
computer which will give the same probabilitics as the quantum system
does. If you take the computer to be the classical kind I've described so far,
(not the quantum kind described in the last section) and there’re no changes
in any laws, and there’s no hocus-pocus, the answer is certainly, No! This
called the hidden-variable problem: it is impossible to represent the results
of quantum mechanics with a classical universal device. To learn a little bit
about it, I say let us try to put the quantum equations in a form as close as

Using a Wigner representation, Feynman concludes:

the great difficulty. The only difference between a probabilistic classical
world and the equations of the quantum world is that somehow or other it
appears as if the probabilities would have to go negative, and that we do not
know, as far as I know, how to simulate. Okay, that’s the fundamental
problem. I don’t know the answer to it, but I wanted to explain that if [ try
my best to make the equations look as near as possible to what would be
imitable by a classical probabilistic computer, I get into trouble.

Motivated the whole field

Of quantum computing

This is all still true today and
is fundamentally linked to
the notion of quantum speed-
up in quantum computing.

However, I'll provide a
heuristic to simulate
quantum systems
probabilistically using RNNs
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IN THIS TALK

» [ will introduce a formulation of quantum physics that looks a
bit like machine learning

» We use generative models, in particular RNNs to parametrize
(,]141;,1l1t111‘1'1 states.

» [ will show an example to motivate why this may be a good
idea in the context of quantum state reconstruction

» [ will show you a heuristic to simulate a quantum circuit with
RNNs
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HOW IS A QUANTUM STATE TRADITIONALLY DESCRIBED?

> A density matrix describes the statistical state of a system
in quantum mechanics. Everything we can possibly know
about a quantum system is encoded in the density matrix.

» A quantum state 1s a positive semidefinite, Hermitian

operator of trace 1 acting on the state space.

» The family of quantum states forms a convex set. For one
qubit: Bloch sphere.
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HOW TO REPRESENT A
QUANTUM STATE WITH
ONLY PROBABILITY?
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MEASUREMENTS: POSITIVE OPERATOR-VALUED MEASURE (POVM)

» POVM elements = (MY | aec{l, .. m}}

» Positive semidefinite operators

>y MW =1

EXAMPLE: MEASUREMENT IN THE COMPUTATIONAL BASIS
MO =10y MW = 1)1 L[=1]0)(0]+ [1)(1]

STATE |¥) = al0) + b[1)

0 2
1)(0 (‘1’|M ( )!‘1’> |al BORN RULE: PROVIDES A LINK BETWEEN
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MEASUREMENTS: POSITIVE OPERATOR-VALUED MEASURE (POVM)

POVMELEMENTS M = (M@ | a € {1,...m}} > M® =1

Born rule. Defines a distribution over the generalized
' ) Ja .
P (a) = Tr pM® measurements => link between quantum theory and

experimental outcome

INFORMATIONALLY COMPLETE POVM

*The measurement statistics P(a) contains all of the
information about the state.

*If m is D2=22N and M span the entire Hilbert space
O =Y O(a)M™
a

*Relation between p and distribution P(a) can be inverted.
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MEASUREMENTS: POSITIVE OPERATOR VALUED MEASURES (POVM)

CONSTRUCTING POVMS: TAKE A SINGLE QUBIT POVM AND MAKE A TENSOR PRODUCT

Pauli measurement for one qubit

f\-‘fl’mlli = {ﬂ[f“] . IJ |”><(}| Al(l] : P(” x |]><]“
MO = p(1) x [4)(+], M o )
MU = p(2) x [ry(r| . MY = p(2) x [1){1] },
A'Il‘.mll (\—\, ]\[l Wi (X) J’\"IPEHI'I (R) ]\'1|‘1Hl|i (X) ‘A.‘II]"”I f“iﬁ AII uli ; ;
AI*IA[(HI)* A[{u ','....A[{”\ }; B :
o, N

Experimental realization: pick a random direction with
probability 1/3, then measure in that direction on each qubit

independently

Easy to implement in gate-based QC (Qiskit, Cirq, Rigetti, etc. )
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GRAPHICAL NOTATION AND INVERSE

Bornrule P (a) = TrpM*

[f the POVM is informationally complete then

P Z ()I.,(('I.)AI(”) @
82
Insert this relation into Born’s rule P(a) = L() a'YTr[MY Ve ) L(J (a"\T,,
p=> T, LP)M
a,a’ (a)
p= ZT ,P(a')M

‘. a,a’
Top =T MOM”

L, (I
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SUMMARY.
REPRESENTATION OF THE
QUANTUM STATE
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MODEL FOR THE QUANTUM STATE

—1p\T a, ) i
P = (T P) M * Factorization of the state in terms of a
r’ ) probability distribution and a set of tiny
tensors

* All the entanglement and potential

complexity of the state comes from the
structure of the P(a)

* Very efficient to handle numerically for
some tasks

« Sign structure of the state is in the tiny

tensors
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KEY INSIGHT: PARAMETRIZE STATISTICS OF MEASUREMENT AND INVERT

P (a) S Tr p]\[a => Unsupervised learning of P(a)

P ' . eoressive 2 g
] i del (a) > Autoregressive models
. Allow for exact sampling
I 2. Tractable density Pmuclo.l (a)

3. Traditionally used in neural machine
translation
o
J

5k,

Pirsa: 19070025 Page 23/50



KEY INSIGHT: PARAMETRIZE STATISTICS AND INVERT

P (a) — Tr p]\[a => Unsupervised learning of P(a)

1)111(1(1(‘1 ({:1) > Autoregressive models

1. Allow for exact sampling

)]

( . ) 2. Tractable density [‘mml(:l (a)
Autoregressive model

$6¢

3. Traditionally used in neural machine

translation
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EXAMPLE: LEARN A
QUANTUM STATE FROM
MEASUREMENTS
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LEARNING GROUND STATES OF LOCAL HAMILTONIANS FROM DATA

a b 1.00
Synthetio state

.65 1 e S g, " Rocanstrcted stato JH — "] T ;i (T;(Tl | II S, (T:

rasl
0.75 J

0.70 1 (.50 4

30 | N=50 spins. P(a) is a
E lITT2929290000000000e. deep (3 layer GRU)

0.00
0301 Lo recurrent neural network
Synihetlc slale
0.85 1 Mowncesrae] 4 o8 language model.
() 20 1) 0 10 20 30 10 Al
2 [

(e, - ) Synthetic state d {er, - o,) Reconstructed state _ ]
C 1.0 1.0 H S O-,O-I
ol Jl O
0.8 0.8 .
0.6 0.6 t,]
| 04 ] 0.4 S SR T
02 = 0.2 ' ' '
1 0.0 H 0.0 __.‘.'f :
0.2 0.2
ol 01 Y7 0.1 s
T T T T 0.6 T T T T 0.6 ]
0 2 | G 0 2 | (
ny Ty

Carrasquilla, Torlai, Melko, Aolita. Nature Machine Intelligence 1, 200 (2019)
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RECURRENT NEURAL NE

WORK MODEL

Full model stacks three of these
hy units and adds a softmax dense

layer at each “time” step
h

L

Basi unit is a gated recurrent unit
]‘L;_,f 1 .

r

4} o ja‘.,

o o tanh
> | J J
[
Lt

Sa
L1

[.:‘:. H.J
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BUT QUANTUM THEORY GOES
BEYOND REPRESENTATION.
DYNAMICS (E.G. SCHRODINGER
EQUATION)? MEASUREMENTS?
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UNITARY DYNAMICS AND QUANTUM CHANNELS

ov =U QUT P (a’) —’n-‘(.ry(_r"wm "’ = Z(_)(,,,U,P(a’)

— N N 1 D) Y Y .
Ounar — L Tr {(ﬂ\_{chi A la _)} Ta—(;, Probabilistic gates: Somewhat (or
quasi) stochastic matrices

(a”) § Ogra P(a) Evolution of pro.bablllty is
somewhat classical :)

- If the starting unitaries are k-local,
the swS matrices are also k-local

swS

BwWS —

Somewhat stochastic matrices
I I U Branko C ' W
anko Curgus, Robert |, Jewett

iSubmitted on § Sep 2007}

The standard theorem for regular stochastic matrices is generalized to matrices with no sign restriction on
the entries, The condition that column sums be equal to 1 is kept, but the regularity condition |s replaced
by a condition on the ¢ ~distances between columns.
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UNITARY DYNAMICS AND QUANTUM CHANNELS

" o /" B ) P ates: S whe '
O — L Ty {(m_{cu}(:fﬁ e _)} T (lﬂ Probabilistic gates bomt what (or
quasi) stochastic matrices

Oures Pa) Evolution of probability is
{I, 1! (I, .
) Z aa ' somewhat classical :)

If the starting unitaries are k-local,
the swS matrices are also k-local

e . ws | = Somewhat stochastic matrices

Branko Curgus, Robert |, Jewett
(Subimitted on 3 Sep 2007}
The standard theorem for regular stochastic matrices is generalized to matrices with no sign restriction on

the entries, The condition that column sums be equal to 1 is kept, but the regularity condition |s replaced
by a condition on the ¢ ~distances between columns.
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QUANTUM DYNAMICS

aP( .”,f oy (@) (@ e o ,-. Q{_}
i f,jj ) = 21 ([t a0 ae) 1, Lopar) BORN RULE L5y

P(t) = (.,—ff.,_.-ltp({-)) Ay =S T [v”, ({'H,A'IMJ ﬂ__](‘u”‘}):|

/ LZea ta,a’

Pirsa: 19070025 Page 31/50



QUANTUM DYNAMICS OF OPEN QUANTUM SYSTEMS

O S ArwPlat) A = 3 Ta b (T ([H, 0] 21

o
+ Z [_%'l’r ({Il Lk, A"]{'U)}A'l“m)
k 5 |

P(t) = ¢4 P(0) + i T (LM @ L) |)
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MEASUREMENTS

» Suppose we want to measure the quantum state. The measurement is
described by some other POVM H(b)

ZP (@) T Te [M@T® | =3 g(bla) P(a)

a!

AN m—1 (a) (b)
a(bla’y =3 7L, M {]\-[ Il
a
» can be characterized as a somewhat conditional probability since its
entries can either be positive or negative but its trace over b is the
identity.
» evocative resemblance with the law of total probability—> quantum law

of total probability in quantum Bayesianism.
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CIRCUITS AND TENSOR NETWORKS IN OUR LANGUAGE

' P v =UpUT
Py (\a”) - Z j)('d,)()a’.a” BORN RULE PU f
N Unitary matrices U

Completely positive (CP)

O =y Te(UMDUTM™ T L, Ce PYOSer |
trace preserving map

a

lensor networks and (J uantuimn cCIirculilts

III# B = [

L - 50
T Ta—
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QUANTUM CIRCUIT

0) —D—
|0) P | & H)—
o ) o D—
0 —{] ‘D

» Start the quantum device in a simple product state
» Apply a sequence of simple unitary matrices acting on the initial state
» To obtain the result, usually measure in the computational basis.

That what a general quantum computation is. The quantum algorithms
(set of unitaries) are designed so that measuring the evolved quantum

state results in the solution of a computational problem

pPU = l]N---UIP(_)Ui‘—---UL Py =0x4...0,0,Py

Quantum computing for the very curious
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QUANTUM CIRCUIT

0) v D—
0) D u O =
o (D=
0) ] o —

» Start the quantum device in a simple product state
» Apply a sequence of simple unitary matrices acting on the initial state

» To obtain the result, usually measure in the computational basis.

Looks similar to Green’s function Monte Carlo, but it has sign problem

Because O are somewhat stochastic

PU = l]N---UIP()Ui‘—---UL Py =0x...0,0,Py

Quantum computing for the very curious h
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SIMULATING QUANTUM
COMPUTERS WITH RNN

Pirsa: 19070025



SIMULATING QUANTUM CIRCUITS WITH RNN

Take an initial distribution

Multiply it by a somewhat stochastic matrix

Results in an evolved distribution Pu(a)

Problem: P lives in a huge dimensional space —> 4# of qubits

Language translation models live in even higher dimensional spaces—
> use RNNs to learn Pu
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SIMULATING QUANTUM CIRCUITS WITH RNN

Introduce a model Py (a)

Compute “distance” between model and evolved Py (d)
through sampling

Minimize distance

Dy, (Pul|Py) = — Z Py (a) In

Dk, (Pul|Py) = H(Py, Py) — H(Py)

H(Py,Pp)=—> Py(a)lnPy(a)=—) P(a')OaalnP(a)

a a,a’
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SIMULATING QUANTUM CIRCUITS WITH RNN

H(Py, Py ZIU (a)In Py (a) Zp ') Opar In Py (a)

H(PU»P() aa’lnp() )

“awP a

Minimize cross entropy to search for an approximation to Pu from samples

drawn from P
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SIMULATING QUANTUM CIRCUITS WITH RNN

Sequence of N unsupervised learning problems
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ALGORITHM FOR APPLYING N QUANTUM GATES

Given N gates, and an initial simple state Py —— P(a1)P(az)--- P(an)

P, = I

For k in N:
Get Ns samples from P
A v s _ | ~ N )
Use samples to train Py minimizing H(Py, Py) ~ i > L(.)a.af In Py (a)
P, =Py

Tal~P,

At the end of the algorithm, the model Py

Po ~ []NIII p[)(I]T(fL P() ~ ON---O2OIP{]
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RESULTS: STATE PREPARATION FOR SIMPLE STATES IN QUANTUM INFORMATION

GHZ state 10 0 0
) )
CNOT —ex - |0 1 00

0 0 0 1
0O 0 1 0

X—o & 1(1 )

1 00 0
) 01 0 0
“Z=1o 0 1 0
00 0 —1

t
Z

N

N

===
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TRAINING DYNAMICS OF THE BELL STATE PREPARATION

i} .00 1.0 1.0
- — 4.0
S BN 0.8
b 530
a - o
Ry :
1.0 5 0.0 0.6 =25
& D: fr EL' 2.0
I N LK -
20 0.0 = <
= - Qs
N 1.5
0.
0.0 T T T (.92 T T T T T T 1.0 T T T
i} o 100 150 200 1] Al 00 150 200 0 Ol [ 150 200 () ] 100 150 200
Epoch Epoch Epoch Epoch
Ns=10000 , | . Prusic(a)
(0) | WL aal 1) L Pla)log =5
MY = 20y (0] :
Batch size=100 3 -
JU SLLE JLU 1oy ) v P (a) Py oae ()
- MUY = 21 (+] -
LSTM model with two stacked 17 — 3 ‘ o
l I po) I \j VTN

: ! _ 2 T
layers with hidden statesd=10 Mip = 3 17) (7]

followed by a softmax Myp =1-M - MU - M
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SAMPLE COMPLEXITY ANALYSIS OF THE LEARNING PROBLEM: GRAPH STATE

1.0 ==

0]
Ne=4 ‘(]
Ng=06

)
)
Nej=4 ‘(])
)

()84

Nog=10
Nq=12 ‘(]

Nq=14

bttt
===

Classical Fidelity

KL divergence

Ns is number of samples from P per gate applied
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SAMPLE COMPLEXITY ANALYSIS OF THE LEARNING PROBLEM

10°
10
—o— Classical Fidelity tep = 0.95
KL divergence ¢y = 0.25
N3
10 L 10" 6 x 10 ’ 1 [T]]
N,

Linear fit gives a slope of ~ 4.0, high complexity but still poly.
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THE STANDARD SIMPLEX AND QUANTUM STATES

In probability, the points of the standard n-simplex in (n + 1)-space are
the space of possible parameters (probabilities) of the categorical
distribution on n + 1 possible outcomes.

Py
I((" 0,1) P(a)="TrpM*
0.1,0) BORN RULE
s,
>

(1,0,0) P .

Qplex p= "1, Lp(a) M
P Py+ P+ Py =1
{({' S J[-},’.A' Hl gt ay oo Hap=11,>20i=01,... A} “All convex bodies behave a bit like Euclidean balls.” Keith Ball
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POSITIVITY AND VISUALIZING THE TRAINING IN THE Q-PLEX

[n this sense probability

theory is too general and

Simplex Quantum theory needs

constrains

Introducing the Qplex: A Novel Arena for Quantum Theory, Marcus Appleby, Christopher A. Fuchs, Blake C. Stacey, Huangjun
Zhu. arXiv:1612.03234 [quant-ph]
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CAN WE SIMULATE QUANTUM SYSTEMS WITH PROBABILITY?

5. CAN QUANTUM SYSTEMS BE PROBABILISTICALLY
SIMULATED BY A CLASSICAL COMPUTER?

Now the next question that I would like to bring up is, of course, the
interesting one, i.e., Can a quantum system be probabilistically simulated by
a classical (probabilistic, I'd assume) universal computer? In other words, a
computer which will give the same probabilities as the quantum system
does. If you take the computer to be the classical kind I've described so far,
(not the quantum kind described in the last section) and there’re no changes
in any laws, and there’s no hocus-pocus, the answer is certainly, No! This is
called the hidden-variable problem: it is impossible to represent the results
of quantum mechanics with a classical universal device. To learn a little bit
about it, I say let us try to put the quantum equations in a form as close as

Answer is still NO (duh), since evolving these distributions
remains a challenge (eg circuits evolution has a sign problem).

However we have introduced a heuristic to do it using RNNs
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CONCLUSIONS

> Introduced a reformulation of quantum mechanics that is
“closer” to statistics. A similar formulation is used in

quantum Bayesian theory.

» Started exploring how to use this reformulation to use
language translation models to simulate quantum circuits

» How to make this more efficient? Transformers, other
generative models or give up :)

» Would like to find generative models directly living in the
qplex

» Dream: run quantum algorithms on the transformer
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