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Abstract: Inspired by the "third wave" of artificia intelligence (Al), machine learning has found rapid applications in various topics of physics
research. Perhaps one of the most ambitious goals of machine learning physicsis to develop novel approaches that ultimately alows Al to discover
new concepts and governing equations of physics from experimental observations. In this talk, | will present our progress in applying machine
learning technique to reveal the quantum wave function of Bose-Einstein condensate (BEC) and the holographic geometry of conformal field
theories. In the first part, we apply machine translation to learn the mapping between potential and density profiles of BEC and show how the
concept of quantum wave function can emerge in the latent space of the translator and how the Schrodinger equation is formulated as a recurrent
neural network. In the second part, we design a generative model to learn the field theory configuration of the XY model and show how the machine
can identify the holographic bulk degrees of freedom and use them to probe the emergent holographic geometry.
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Machine Learning Physics

e Emergent phenomenon — a central theme of condensed
matter physics.

Weyl semimetal String net ER = EPR SYK model

(emergent condensation (emergent (emergent
particle) (emergent spacetime) gravity)

force)
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Machine Learning Physics

e Aren’t all these physics theories themselves also emergent
phenomena?
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Machine Learning Physics

e (Goal: investigate whether artificial neural networks can be
used to discover physical concepts and laws from
observation data.

e Examples \/\/\,\/\@
- . . O
® Machine learning quantum mechanics Q_C]—Q_Q
— recurrent autoencoder e 4

C Wang, H Zhai, Y-Z You. arXiv: 1901.11103

e Machine learning renormalization group
and holographic duality
— flow-based deep generative model

S

(o g0 o

¢ (x) boundary

H Hu, S-H Li, L Wang, Y-Z You. arXiv: 1903.00804
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Potential and Density Data

e Suppose quantum mechanics has not been formulated so far

e Yet, amazingly, we know how to perform cold atom
experiments of Bose-Einstein condensate (BEC)

_\/\/7_’\/\/\/\/\

Potential profile BEC Density profile

(optical speckles, (in-situ measurement)

Optlcal tweezers ) Billy et. al., Nature (2008),

Henderson et.al., NJP (2009) ...

Issac Tamblyn’s talk

e Questions

e Can quantum mechanics (QM) be discovered as the most
natural theory to explain the experiment?

¢ Will the machine develop alternative form of QM?
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Inspiration from Machine Translation

e Motivation: developments in machine translation
e Sequence-to-sequence mapping (RNN, LSTM ...)

Machine Translation

“La nina bebe agua.”

X Semantic space
girl_
“The girl drinks water.” voy”" nind
nifRo /woman
e Representation learning (word2vec ...) man qyeen
king - man + woman = queen king/'

I Mikolov, SW Yih, G Zweig. NAACL-HLT-2013
also Paul’s talk
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Inspiration from Machine Translation

e Motivation: developments in machine translation
e Train the neural network model to perform a task
e Discover concepts and relations in representation space

“La nina bebe agua.”

[ ] [ ] [ J EDO
\(.déhs\i,t»y\grqji@ function

wave
“The glrl drinks water.” | | | | ®
O
LS
(potential \p}ndfile)

Similar setup but different task: @ Task: po’[ential-’[o-densi’[y mapping
S Pilati, P Pieri, Scientific . .
Reports (2019) e Latent variables: wave function?
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Potential-to-Density Translator
e Recurrent neural network (RNN) translator

density (output)

h,
I}_blmns lation =1
loss LN -

potential density (target)

L‘rmmmg data—!
e Discretize the 1D space, collect training data by simulation

Vo

- em - -——— -y
Ll LT

¢ |nput: potential sequence V;

e Update: hidden state h; = U (Vi) - hiq

e Output: density sequence p, = P(h;)

e Minimize translation loss LRNN = D _;c window (Pi — pi)?
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Performance of the Translator
e Performance of the RNN translator

4 : : :
- o . ——target =--output
(ST ¢ " p

HAVAYAVA / smooth &
o~~~ shallow

u,\/VV\/\/vvvvvvvvx/\/V\&& smooth &
CfNCE N N\____{ deep

rough

Trained over .- EAUMWNMAMRRANMMAPYAN O
l i i

window of 50 At
~_ 0/ 100 200 300 10C w_
Automatic scalable

to larger systems
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Introspective Learning
e |ntrospective Learning

potential knowledge distiller

(RAE)

D

reconstruction
} loss Lrap

-
» |
-

It
PIY -

- |-
- - -
-
- w Y
S
i ]

Q

I

e e
IS

}_'I_.rn‘nsln,ljion
l()b‘h’ LH[\'N

-

potential density (target)

\—training data—’

High-level machine
only interface with
the neural activation
of the low-level
machine

Low-level machine
deal with training /
experimental data
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Emergent Quantum Mechanics

e Imposing information bottleneck 1
e Squeezing the latent space dim 3
e Monitor the reconstruction loss 3 2

of the knowledge distiller

® Abrupt increase of loss only when 11

latent dim < 2 = two real variables ;100 200 300 100

steps

e Quantum wave function and its 1st order derivative
oo 1 Update rules
ENANAANANANANANANAN
; [1) \J \/\J \/\J \AJ \/\J \/\J \/\ Jit1,1| _ I al| |gi1
S 1 ] Gi+1,2 aVi 1 Gi,2
E-2f . . . i matching Schrodinger Eq.

0 100 200 300 100 A r

: O%p(x) = V(x)(x)
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Alternative Forms of Quantum Mechanics

e |f we relax the information bottle neck — alternative forms of
quantum machines can also emerge, e.g.

- p(x) | [0 2 O | p(x)
O | p(x)| = |V(x) 0 L | p(x)
' () | 0 2V(x) Of |p'(x)
e Hidden variables: density p(x) = [¢(2)|* and derivatives

e But requires at least three real variables

e Wave function + Schrédinger equation formulation of QM is
indeed the most parsimonious theory that have emerged in

our neural network.
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Machine Learning
Renormalization Group
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Quantum Field Theory as Image Dataset
e Afield: a mapping from spacetime to some target manifold

- T . - '\ .89
. : [ {).()2]
0.01

b |
b T R

Scalar fields Vectof fields

e A guantum field theory (QFT): a model that assigns an action
(= negative log likelihood) to every field configuration.

=

action

e Can we build a generative model to represent a QFT?
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Renormalization Group as Generative Model

e Renormalization "group" (RG): progressively coarse-graining
the field (like a convolutional neural network)

uv IR

» RG scale
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Renormalization Group as Generative Model

e Renormalization "group" (RG): progressively coarse-graining
the field (like a convolutional neural network)

uv IR

» RG scale

O
o

m(f)(;:zir )‘ .gbl’ (@ )- ('f)n ()
777

<

Traditional RG is not invertible...
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Renormalization Group as Generative Model

e Renormalization "group" (RG): progressively coarse-graining
the field, like a convolutional neural network

uv IR

» RG scale

b :
1 T -
O( ;j}j.') gf)’ (,’L‘) ([)N ()
Cédric Bény, NJP

® Inverse RG: a hierarchical generative model 543

» inverse RG scale

T i \ ¢(x) = G|((x, 2); w]
(w,21) C(r,z2)  ((r,23) boundary GenTerator
bulk field field
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Generative Models

e Flow-based generative model: generate images from noise

(latent variables) by an invertible non-linear transformation
Generative -
model et
Random noise < TRES ¥

e (Generative model deforms the probability
distribution, sample ( to generate ¢

6 = G(Q)

P(9) = PO)(

A A AAAAALL A

A

o6(0

O(

AMMAAAA A A
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Generative Models

e What are the advantages of flow-based models compared to
energy-based models (e.g. Boltzmann machines)?

e Differentiable log likelihood allows gradient to propagate
through probability to train the model.

| OGO !
L= KL(HIH'tHHm“) Rllf“((]—l)) - ]Dhrinr(g)( (Q))

IC
e Direct sampling allows efficient sample generation Q
= G(C)
e Bijectivity allows inference of latent encoding
¢ =G (¢)

e (Generative models with tractable likelihood

e Flow-based: Zhang, E, Wang (2018)

e Autoregressive: Wu, Wang, Zhang, PRL(2019), Sharir et.al. (2019)
e Tensor networks: Han et.al. PRX(2018)
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Neural Network Renormalization Group

e Generative model deforms noise to QFT  Li. Wang, PRL (2018)
Hu, Li, Wang, You (2019)

()
Posterior ~ Prior  Generator A
(boundary) (bLilk) |
A OGN 1 7
_)(f)[d)] = P[g] det ( SEC}) i 02
Model o6 {(r,2) f::; 5
1 decimator [ SMIE
IMinimize KL divergence i =NE
=[]
Target (QFT) s -.- = 3
P[QJ)] — 6)—S|'(/)]/Z @.-l.ll ll v
¢ (r) boundary
e How to choose the prior? MERA network - Vidal (2006)

pl
-~

Our choice: independent Gaussian P[(] o e ¢ (Why?)
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Information Theoretic Goal of RG

e Renormalization Group = Deep Learning? wehta, Schwab (2014)

B - Deep Architecture

L - i3
5 J%ﬂ) JOL JION O J(:\
A AN
JIINS/ INI/IN\I/ IN\NJ/ J
0 :

AN ONONONONONONONONORI

e Maximal Real-Space Mutual Information (maxRMI) principle

Environment

(A) Koch-Janusz, Ringel (2017)
| max [ (H, &)
/ Coarse-grained I
/o
'@

freedom
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IR
A
A .7\, (p ~
¢’ ¢ O
¢1 d’ B v
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Information Theoretic Goal of RG
e Minimal Bulk Mutual Information (minBMI) principle

e maxRMI|: max [(gbfq L OR)
® MiNBMI: min /(4 : ()

Two objectives are related
I(¢'y : o)+ 1(Ca: (B)

= I(¢pa, pp) = const.

Hu, Li, Wang, You (2109)

e The objectives are two-folded
e Generate the QFT on the boundary
min KL(Py[¢]||e 519
e Disentangle the QFT in the bulk  P[¢] o ¢~ 11
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Complex ¢4 Model in 2D
e | attice field theory on square lattice

Slol ==t > ¢rdi+ Y (uleil + Aeal*)
(i)

e Effectively 2D XY model ¢; = ﬁr:i”* '%'3
1

Sl0] = —= » cos(0; —0;) mmns
R o pr I g
616~y (Gl e
: » T
Luttinger liquid Tkt Disordered (effectively
(CFT) tuned by )
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Training Scheme
e Architecture: flow-based hierarchical generative model

—J—disentangler oi A
X)X jﬂ,i—-—decimater ljector , e
|9 |4 e
S CR 571-}1 -;TTT
(top view of one layer) ¥ i 2
e Objective: min KL(Py[¢p]||e 1?)) = 41(){ |y

Bl (SIGIC) ~ 111 ~ mdet (2561))

e Sample ¢ from bulk, push to the boundary ¢ = G|(]
e Forward: evaluate loss function
e Backward: propagate gradient to train bijectors
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Performance of the Generative Model

e et us first make sure that the machine learns the correct
physics from the given action.

® Phase diagram (32x32 finite size lattice)

2.0 - I 2 2
1| (b) TR DU A B
~ . . . | e 0 g ]
& 10} Luttinger liquid " E _ £
05k  Disorger -1} ™, -1
0.0 == ' * = : 210 1 2 210 1 2
0.0 0.2 0.4 0.6 0.8 1.0
Re ¢, Re ¢f’
r
e Correlation function
-0.22F- ' | b —10
— -0.24 algebraiciy-2
= -0.26 -4
O _0.28 -6
2 -0.30 -8
= -0.32 -10
034y o T -T2
0.0 0.5 1.0 1.5 2.0 2.5 3.0

log (r)
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Machine Learning Holography
e Training a generative model establishes a holographic duality

min KL(P[¢] det (6. G[¢]) ! |]e 1]

CFT (boundary) AdS (bulk)

Z =Trge Y «—> Z=Tr P[¢]det(6:G[¢])
Field theory in flat space (Classical) gravity + matter
e massless field ¢(z) e massive matter ((z,z)

e on background G|-; w]

Features in dataset Deep generative model
e image ¢(x) e latent representation ¢(z, z)
e neural network G|-; w]
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Efficient Sampling from the Bulk
e Sampling: holographic mapping from bulk to boundary
e Massive field in the bulk — Critical field on the boundary
® | ocal update in the bulk = Global update on the boundary
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Efficient Sampling from the Bulk
e Sampling: holographic mapping from bulk to boundary
e Massive field in the bulk — Critical field on the boundary
® | ocal update in the bulk = Global update on the boundary

____________
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___________________

_______
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Efficient Sampling from the Bulk
e Sampling: holographic mapping from bulk to boundary
e Massive field in the bulk — Critical field on the boundary
® | ocal update in the bulk = Global update on the boundary

" (I T I T R B T I B T L I '}
1
’
“““““““ L T S R A A ) '
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R ! N ! ¥
r \ \ ’ \
A} LR + v ’
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w0 el ’ A \ b}
Py eN b . [ \ [
Ay . 1 '
\ () [ .
' ~ A \
/ \ L} ) 1
- \ ‘
- .
' “ .
,,,,,,,,,,, X [
___________________ - AR
............. i - .
------- ’ P
------ [ Vadoa
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e '
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0.4}
0.2}

0.0

Efficient Sampling from the Bulk
e Sampling: holographic mapping from bulk to boundary

e Massive field in the bulk — Critical field on the boundary

® | ocal update in the bulk = Global update on the boundary
e Order parameters converges faster using bulk MCMC.

bulk MC

(boundary MC)

0 100000 200000 300000 400000 500000
Epochs

Related topics:

e Self-learning MC
Huang, Wang, PRB (2017)
Liu, Qi, Meng, Fu, PRB(2017)

e Super-resolution sampling
Efthymiou, Beach, Melko (2019)

Latent space MCMC § Physical space MCMC
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Probing Holographic Bulk Geometry

e |nference: holographic mapping from boundary to bulk

e Push the boundary field distribution back into the bulk
— Bulk Effective Theory

Sel¢) = IS/ + In Po[GLC]) — n PIGIC)

model target
e Bulk field will have residual correlation
e Pessimist: model is too weak, training is not perfect ...
e Optimist: important message about bulk geometry!

Serr[C] = / 9" 0, C 0 €+ m*|C1* + ul(]t + -
J M

(GCY or (G i Gj) ~ el

correlation mutual info.
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Probing Holographic Bulk Geometry

e To fit the quadratic terms, we can stage 1 stage Il
model the prior by correlated Gaussian fix train
P[C] ~ e ¢ B¢ P[] Il
‘ A
= T2} () 1
L?ﬁlu 7.0 — stage 1 g =
— 6.8 — stage I1 £ T
£ 6.6 = -
L 6.4 = fa
S = -
6.2 =
0 ) [0 15 20 25 |

_lq A —_1‘ (f)
e (] ( Slo]

S|p] given by QFT

training steps (x 107%)
e Geometry from information )
dii = —€1(G : ¢;) = S (1 _ <“’> )

| 2 (GGG G)

X-L Qi (2013)

geodesic distance
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Probing Holographic Bulk Geometry
e Apply to Luttinger liquid CFT, measure the bulk distance

d(x,y,z|x+r,y, z) ~Inr d(x,y, z|lx,y,z +7r) ~r

4.0
F(Q) 3 OF(b)

- 3.5} ] :
7! [ 4}4 DI
= 3.0F 2
=~ 925k 5o A
. E
5 2.0f S 3t
= 1.55 ~ a1

1.0f i _ _

0500 05 1.0 1.5 2.0 2.5 | 2 3 |

In r r

e Result matches hyperbolic geometry ~ AdS

‘ 1. ) )
ds” = —(da” + dy” +dz7)

&
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Summary

e We demonstrated several examples of machine learning
physics. The common theme:

® Train the machine on a task (but we don’t use it!)
e Open up the neural network for emergent physics

Task Emergent physics
ML Quantum Potential-density Wave function +
Mechanics mapping Schrodinger eq.
arXiv: 1901.11103

ML Holographic Quantum field RG scheme, bulk

Mapping generation effective theory
arXiv:1903.00804
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