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Abstract: High-dimensional quantum systems are vital for quantum technologies and are essential in demonstrating practical quantum advantage in
guantum computing, simulation and sensing. Since dimensionality grows exponentialy with the number of qubits, the potential power of noisy
intermediate-scale quantum (NISQ) devices over classical resources also stems from entangled states in high dimensions. An important family of
guantum protocols that can take advantage of high-dimensional Hilbert space are classification tasks. These include quantum machine learning
algorithms, witnesses in quantum information processing and certain decision problems. However, due to counter-intuitive geometrical properties
emergent in high dimensions, classification problems are vulnerable to adversarial attacks. We demonstrate that the amount of perturbation needed
for an adversary to induce a misclassification scales inversely with dimensionality. This is shown to be a fundamental feature independent of the
details of the classification protocol. Furthermore, this leads to a trade-off between the security of the classification algorithm against adversarial
attacks and quantum advantages we expect for high-dimensional problems. In fact, protection against these adversarial attacks require extra
resources that scale at least polynomially with the Hilbert space dimension of the system, which can erase any significant quantum advantage that
we might expect from a quantum protocol. This has wide-ranging implications in the use of both near-term and future quantum technologies for
classification.
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Vulnerability of Quantum Systemsge Adversarial Perturbations
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Machine Learning: Differentiable Architectures and Thresholding

Learning model: h(x) : R? s Z.
Usually a composition: h(x) = threshold(v(x)), where v(x) : R? — R is differentiable.
Typical question: generalization performance.
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Machine Learning Has a Problem
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Machine Learning Has a Problem

It generalizes to any norm:

Original {3-norm=10 { o-norm=0.05 fh-norm=5000 (sparse)

egyptian cat (28%) traffic light (97%) traffic light (96%) traffic light (80%)

Source: arXiv:1809.02104
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Early Literature on Adversarial Attacks

@ Discovered in 2013 (arXiv:1312.6199).

@ Sensitivity to adversarial perturbations.

@ Distinct from random noise: generalization performance?
@ White-box attack: access to gradient.

@ Initially thought of as a property of deep learning networks.
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Arms Race

Source: arXiv:1602.02697
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This Bug is Fundamental

Source: arXiv:1712.04248
It's a black-box attack!
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The Problem Is the Nature of High-Dimensional Geometry
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That Implies that Quantum Computing Has a Problem

Machine Learning Quantum Computing and Quantum
Learning model: h(x) : R? s Z. Protocols
Usually a composition: U:C9— CH
h(x) = threshold(v(x)) But: often measured and thresholded!
v(x) : RY — R is differentiable. h(|v))) = threshold(measure(U|y))))
So:
h(|¢))) : C9 +— Z.
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Setting

Adversarial
quantum
learning

Security

Quantum ~ Machine
data learning
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It's Not Just about Learning Protocols: Classification in General
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[s o entangled or not?

Phase transitions

flo) = Tr(Wen o)

Which phase is & in?

Entanglement witness
Went learned

Is o an unusual state?

Anomaly detection

Related: quantum change point,
quantum template-matching
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What's Safe?

Our scenario does not cover regression problems, e.g., a unitary transformation

U:C9— 9.

Uhlmann’s theorem guarantees that the fidelity does not get worse after the
transformation.
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Scenarios

Classification Protocol ﬂ
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Scenarios

Classification Protocol n
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The Geometry of the High-Dimensional Space

A class is distributed according to some
probability distribution p.
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The Geometry of the High-Dimensional Space
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Assumption: A model trained on it has
nonzero error rate on p.

Probability of misclassifying: j1(M).

Note: this is not the same as empirical
error!
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The Geometry of the High-Dimensional Space

Probability of misclassifying: (M) > 0.

M: c-adversaries: within ¢ distance to M.
misclassified
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The Geometry of the High-Dimensional Space

Probability of misclassifying: (M) > 0.

M: c-adversaries: within ¢ distance to M.
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Concentration Function

Definition. For ¥ C ¥ with distance measure D and probability measure i, we define
the concentration function a(c¢) as a(e) = 1 — inf{u(X.)|pu(X) > 1/2}.

This does not mean that the error rate has to be 0.5!

Anti-concentrated space: «(€) =~ 0.5
Concentrated space: a(¢) ~ 0
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Normal Levy Family

If ¥ is equipped with a vector space with dimension d and
a(e) < he k9,

the corresponding space belongs to the (1, l)-normal Levy family, where 1, > 0.
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Concentration Theorems Apply in SU(d)

Theorem. Suppose o € SU(d) and a perturbation o — p occurs, where dys(o, p) < €
and dys is the Hilbert-Schmidt distance. If the adversarial risk is bounded above by R,

then €2 must be bounded above by

g (M(M)(Ql - R)> '

Proof. By showing that SU(d) equipped with the Haar measure and Hilbert-Schmidt
metric belongs to the (v/2,1/4)—normal Levy family.

Consequence. |t becomes more and more difficult to certify whether o has been
adversarially perturbed.
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A Fundamental Trade-Off

Tension develops between
@ The resources required to ensure robustness against misclassification

@ The quantum advantage expected as the dimension grows.
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Defense |s Very Expensive

Theorem. Alice needs Ngate copies of p to estimate the fidelity F(o, p) to a precision
that is necessary to guarantee that the adversarial risk is at most R with failure
probability A. Then she requires at least

d4
g*(n(M),R)A

N state E

copies of p, where g(u(M),R) =2In(2/(p(M)(1 — R))).
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Bad for Quantum Learning

Classify states that we do not have the classical descriptions of:
@ Quantum-template matching (Sasaki, 2002);
@ Quantum anomaly detection (Liu and Rebentrost, 2018).
Control-SWAP gate serves as the key component to the classification device.
@ Difficult to experimentally realise.
@ Gates delegated to Bob to prepare.

@ Certifying the control-SWAP gates to a constant precision 7 is insufficient and the
minimum 7 to be robust against adversarial attacks must grow with scaling at
least d?
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Bad for Studying Phase Transitions

Too pathways:

@ Classical machine learning on classical simulations (Carrasquilla and Melko,
(2017); Huembeli et al., (2018))

e Classical machine learning on data coming from quantum experiment (Uvarov et
al, 2019).

@ Potentially imperfect processing of experimental data from quantum device
(Harris et al., (2018); King et al., (2018)).

The space is high dimensional to begin with, plus:
@ Delegated state preparation.

@ Delegated quantum operations.
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Bad for Many Other Protocols

@ Imperfect witnesses, e.g., learned entanglement witness (Ma and Yung, 2017).

@ Classifying nonlocal correlations (Deng, 2017).
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Conclusions

Beware of the bug!

Intrinsic problem in any quantum protocol
that maps to discrete sets and has a
nonzero error rate.

Beyond SU(d)?

What about CV systems?
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