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Abstract: Variational algorithms for a gate-based quantum computer, like the QAOA, prescribe a fixed circuit ansatz --- up to a set of continuous
parameters --- that is designed to find a low-energy state of a given target Hamiltonian. After reviewing the relevant aspects of the QAOA, | will
describe attempts to make the agorithm more efficient. The strategies | will explore are 1) tuning the variational objective function away from the
energy expectation value, 2) analytical estimates that allow elimination of some of the gates in the QAOA circuit, and 3) using methods of machine
learning to search the design space of nearby circuits for improvements to the original ansatz. While there is evidence of room for improvement in
the circuit ansatz, finding an ML algorithm to effect that improvement remains an outstanding challenge.
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Source: NAS Report Ch. 7
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Quantum Computing in the NISQ Era
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Using a Quantum Computer

Output is always a bitstring drawn from the Born distribution.
Try to arrange the distribution so that the bitstrings are useful.
1000s of samples in a reasonable amount of time? 10000? 1000007?

Part of the goal is to limit the number of calls to the quantum computer.
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Optimization with the QAOA




Quantum Approximate Optimization

Algorithm

Farhi, Goldstone, Gutmann (1411.4028)

Objective: Find a low-energy state of a given computational-basis Hamiltonian.
More complicated Hamiltonians will be more difficult, but the recipe is general.
Variational: there are parameters to tune.

Based on adiabatic theorem/algorithm, but different in practice.
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Quantum Approximate Optimization

Algorithm

V) = exp(—iBpX) exp(—inpE) - - - exp(—if1 X ) exp(—iy E)H"|0)
2p parameters to tune, try to get |p> to be a low energy state.

Really: try to get |p> to have a large amplitude in low-energy states. You don't
actually care if |p> itself is low-energy.
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Quantum Approximate Optimization

Algorithm
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Quantum Approximate Optimization

Algorithm
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Quantum Approximate Optimization
Algorithm
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The QAOA According to Schrodinger

Compute the final state after applying the circuit.

Superposition over bitstrings, hopefully with more weight on the low-energy
ones.

Can see how certain choices of the parameters lead to trivial results.

1) = exp(—ifX)exp(—iyE)H®"|0)
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The QAOA According to Schrodinger

Initial state:

1
HO =l =—12 Y 1a
ze{—1,1}"

Uniform superposition over all bitstrings (equivalently, strings of +/-1).

Eigenstate of Pauli-X on each qubit.
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The QAOA According to Schrodinger

Next apply Hamiltonian time evolution:

xp(—iE)+) = == 3

n/2
2 ze{—1,1}"

Hamiltonian is diagonal in computational basis.

Born probabilities still uniform on bitstrings.
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The QAOA According to Schrodinger

Finally apply mixing Hamiltonian:

exp(—iﬁX)exp(—i'yE)H):27}/2 Z e~ E(2)=iBX |5

ze{—1,1}"

Now interference can happen which depends on the energy levels.

By tuning the parameters we can arrange the state to be advantageous to us.
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The QAOA According to Feynman

Compute the propagator:

(1e= X =B ) = (/| T(cos B — iX sin )] z)e~VEG
(| T](1 - iX tan B)|z) cos™ B E12)
(—7 tan 5)d(z’,z) cos™ Be~VE(2)

d(z,z') is the Hamming distance



The QAOA According to Feynman

Suppose z is the ground state, and each flip of a bit costs energy €. Sum the
propagator over uniformly over initial bltstrlng3'

C
(20 \e“zﬁX _“WE|—|— > BZ ztanﬁe“”G) (20,2)

on/2
B 00:;2’25 Z (3) (—i tan Be17€)?
21 g

= (cos B — isin fe =1
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The QAOA According to Feynman

The probability of measuring the ground state is then

1 |
P(z) = 2—n\ cos B — isin fe1€|"

1

S

(1 — sin 2 sinye)"

We can tune the parameters to make this probability equal to one.

Still need to use the quantum computer to extract z |
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The QAOA According to Heisenberg

Focus: Ising model on a graph (e.g., square Iattlce) with random couplings.
E= Z

Why this model?

Easy to put on a quantum computer, hard to solve exactly.
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The QAOA According to Heisenberg

Hamiltonian evolution is a product over “ZZ" gates, simple two-qubit gates:
exp | —uy E JijZiZ; | = I I exp(—ivJ;;4;45)
(i7) (i7)
Easy to realize with single-qubit rotations and controlled phases:

(ZZ,'+bZJ'+C(]. —Z,)(]. — ZJ) = (a —C)Z,' +(b—C)ZJ' +C+CZ;'ZJ'

Only nearest-neighbor two-qubit gates.
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The QAOA According to Heisenberg

Prescription is to minimize

(W E)

Isolate the ij edge. Use Heisenberg evolution for Z Zj. Only neighbors of the ij
edge will matter.
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The QAOA According to Heisenberg

The mixing Hamiltonian just rotates the Pauli operators:

exp(i8X)Zbexp(—18X) = Z; cos28+Y;sin 23

Now the edge operators:
e Vi ZiZk (7. cos 23+Y; sin 23 ) eV ikZiZk = 7. cos(23)+Yie 21 ik4iZk gin 23

We can sum over k in the exponent.
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The QAOA According to Heisenberg

Z; cos(2f) + Yie 27 2n SinZiZi iy 23

There is a similar expression for site j as well. To have a nonzero expectation
value in the |+> state, you need an even number of Z operators on each site.
Then we can toss out several terms involving the neighbors of site i that are
not site |:

Z; cos(2B) + Yie 210 4is H cos(2vJ;) sin 23
kot
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The QAOA According to Heisenberg

I'll spare you the rest of the details, but just a few lines from here leads to

H cos(2vJir) + H cos(2vJ;1)
k k

1
(E) = 5 sin 43 Z Ji; tan(2v.J;5)
(1)
Beta is completely determined!

Ganna remains a variational parameter.

Solve for gamma, call quantum computer.

Pirsa: 19070008

03 -

02 -

Page 25/38




Can we do better?




Better objective function?

Why is <E> the thing we are optimizing?
Want to maximize the probability of finding a low-energy state.
We'd rather be optimizing something like <O(E, - E)>.

This may be worth a try! But which E; do you pick? Also seems annoyingly
discrete.
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Better objective function?

Exponential decay is
similar to a step
function...

-1.0 -0.5 ' 0.5 1.0 1.

w

20
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Gibbs Objective Function

Introduce a single new hyperparameter.
f(B,7,m) = —log(e™"")
» Vo T &
Small n: equivalent to <E>
Large n: isolates probability of getting the ground state
n is analogous to an inverse temperature.

Can estimate a good value of n if you know the energy scales of the problem.
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A different ansatz?

Can we find a better circuit ansatz?

Enlarge the search space beyond those unitaries connected by the continuous
parameters.

One idea: Include discrete variations obtained by adding/removing gates.
Focus on removing two-qubit gates.

Fewer gates is better for NISQ, but can we don't want to sacrifice on ansatz
quality.
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A different ansatz?

scaled probability 1.3139 1.2910 1.2885
Removing 30-40% of sparsity 17/24 16/24 16/24
the ‘tWO qubrt ga‘tes @ ® @ @ o ® & @ @ B — (G — o 2 [ o
|eadS to improvement *e——o l—i *——e o—l *—e o—l o—l l—l

most of the time. | | |

® a2 @ E T—T o—9 .—T —0 .—T o9
The trick: which 30% o o o l — .—l l—o -—l l—. .—l
do you remove? scaled probability 3.2464 3.2215 3.2131

sparsity 26/45 27/45 25/45
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A different ansatz?

. S o (a) grid +
Gibbs objective Fa 882 + t 3 $
function + gate o 0.04 _’_
removal are a potent S 88; _‘. -!- _._
combination. Z 0

0.01
o0 =55 B3 B2 T
Works especially well S 0.40 . 5
for the fully-connected > 9-32 (b) complete j_
graph. (Why?) = 025 4
Q 020 | ==
S0 + n o—
5005 == T =3
. QAOA sparse QAOA sparse

energy energy Gibbs Gibbs
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Architecture Search

Beam search to find optimal circuit
architectures.

How do we do the scoring at each level?

Full simulation (expensive), some sort
of heuristic, ML model...
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Parameter Estimation

Estimated parameters to
save optimization time:

9
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- 2 72 1 4
0 (Za‘-jk,j%k Jiidii T3 2ij ‘]'i.?)

12000

10000

8000

w ||
|||

1400 08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26

12000

10000 s complete
8000
6000
4000 I I

806 0.07 0.08 0.09 0.10 0.11
estimated ~

- grid

Pirsa: 19070008

scaled probability of low energy

OO0 OO ==
O N WR U OONARONONAO®

Nelder-Mead estimated

(@)

0 5 10 15200 5 10 15 200 5 10 15 20
number of removed two-qubit gates

Page 34/38



The Energy Heuristic

What happens to <E> when we remove one of the two-qubit gates in the
model? From the derivation, this is equivalent to setting J, =0 for that edge.

Use O(y?) analytic approximation for <E> find change in energy after removing
an edge:

1
A(B)y ~ =25 |1=20" | DTG+ ) Jii+ §Ji2j
i ki k#] -

It's better to remove the gate if its neighbors have large couplings.
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ML Guided Search?

It turns out that this is quite hard.

We don't need to actually simulate the quantum circuit, we only need to be able
to rank the circuits in terms of their performance.

We can beat random chance, but fall far short of the potential gains.

Is it worthwhile?
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Results

Greedy simulation vs
large beam width
(100) for heuristics.

Simulate the top n
candidates at the end
of the search for
comparison.
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What next?

There is something interesting happening here, and it could be valuable for
NISQ devices.

Can we improve the ML or find a better heuristic?
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