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Abstract: A device called a & Gaussian Boson Sampler&€E™ has initially been proposed as a near-term demonstration of classically intractable
guantum computation. But these devices can aso be used to decide whether two graphs are similar to each other. In this talk, | will show how to
construct a feature map and graph similarity measure (or &€ graph kernel&€™) using samples from an optical Gaussian Boson Sampler, and how to
combine this with a support vector machine to do machine learning on graph-structured datasets. | will present promising benchmarking results and
try to motivate why such a continuous-variable quantum computer can actually extract interesting properties from graphs.
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Machine learning uses distances between feature vectors.

K-Nearest-Neighbour

MOTIVATION
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Machine learning uses distances between feature vectors.

Support Vector Machine

T proj

MOTIVATION
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Machine learning uses distances between feature vectors.

Neural Network

input layer output layer
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[t is difficult to define distances between graphs.

MOTIVATION
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A gallery of graph kernels has been developed.
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We can use quantum light to formulate a graph kernel.
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ENCODING

[Schuld, Bradler, Israel, Su, Gupt - arXiv:1905.12646]
MOTIVATION
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The GBS graph kernel is very similar to a graphlet sampling kernel.

Graphlet Sampling Kernel

Shervashidze, Nino, et al. Artificial Intelligence and Statistics (2009).
MOTIVATION
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The GBS graph kernel is very similar to a graphlet sampling kernel.

Graphlet Sampling Kernel

f = (0230

Shervashidze, Nino, et al. Artificial Intellicence and Statistics (2009).
MOTIVATION
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The work is part of hybrid/near-term QML.

QUANTUM MACHINE LEARNING

quantum learning data mining with quantum techniques data mining for
theory quantum devices for ML quantum labs

hybrid coherent
algorithms algorithms

MOTIVATION
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A GBS device can encode a graph.
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A Gaussian state of M optical modes is fully described by a covariance matrix
o € R®M>x2M a5 well as a displacement vector d € R*M,

. . B . .
We can associate such a state with an adjacency matrix A via

| - 1 0 1 - A 0
_ o 1 = : _ _
o= (1—XA) Z,WrchX_(ﬂ 0),/-1—0(0 1).

GBS KERNEL
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The Hatnian is related to the number of perfect matchings.

OO0 Q L
n + Haf(A) = ayaxp+apajz+apan
OnORONO »

GBS KERNEL
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The photon counting distribution depends on the Hafnian.
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Let n = (ny,...,nym), ny, € N be a “photon click pattern” measured by M photon
detectors. The probability of this measurement is given by

p(n) « Haf*(Ap)

GBS KERNEL
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Aj 1s an (extended) subgraph of A.

Ap110 =

GBS KERNEL
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Aj 1s an (extended) subgraph of A.
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GBS KERNEL
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We summarise photon events to orbits.
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An orbit is a set of photon click events which are permutations of each other.

GBS KERNEL

Pirsa: 19070005 Page 20/32



We summarise photon events to orbits.
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The probabilities of the orbits are the features of a graph.
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RUNTIME & INTERPRETATION




We can extract the features in the fraction of a second.

) —

{2(105;(2)0 + log(;))w

€2

Fork =8,D =67, ¢ = 0.05and & = 0.05, we need 39,550 samples.

Photon number resolving detectors can accumulate about 10° samples per second.

RUNTIME
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The features are related to matching polynomials.

» The coefficients m (G, r) = Zneo“ o Hat(An) of a matching polynomial count
the number of r-matchings or “independent edge sets” in G — sets of r edges

that have no vertex in common.

INTERPRETATION
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The features are related to matching polynomials.

» The coefficients m (G, r) = Zneo[l,...,l,ﬂ,...] Hat(An) of a matching polynomial count
the number of r-matchings or “independent edge sets” in G — sets of r edges
that have no vertex in common.

> The higher-order moments E[X{“ s Xi”‘] . X}&] . Xﬂm] of a multivariate
Gaussian distribution N(f1(d), f2(0)) are proportional to Haf(Ap)

INTERPRETATION
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We can test the kernel on standard graph data sets.

1728 [86%] 257 [84%]

Fingerprint IMDB-BINARY

] N

COX2 MD ENZYMES

- -y
204 [34"!0]

MUTAG NCI1

118 [39%)] 357 [80%]

PROTEINS

number of
graph edges

number of
graph nodes

PTC FM

1080 [38%*] 806 [81%]
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179 [96%] 1836 [45%] 515 [46%]

BENCHMARKING

284 [81%]
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The results are promising.

Dataset

GBS (d = 0.0)

GBS (d = 0.25)

GS

RW

SM

AIDS
BZR-MD
COX2_MD
ENZYMES
ER_MD
FINGERPRINT
IMDB-BIN
MUTAG
NCI1
PROTEINS
PTC_FM

99.60 + 0.05
62.73 + 0.71
4498 + 1.80
22.29 £ 1.60
70.36 £ 0.78
65.42 + 0.49
64.09 + 0.34
86.41 + 0.33
63.61 £+ 0.00
66.88 + 0.22
53.84 + 0.96

99.62 + 0.03
62.13 + 1.44
50.11 4+ 0.97
28.01 +1.83
70.41 £ 0.47
65.85 + 0.36
68.71 + 0.59
85.58 + 0.59
62.79 + 0.00
66.14 + 0.48
5245+ 1.78

98.44 + 0.09
60.60 + 1.77
55.04 + 3.33
35.87 +2.19
65.65 + 1.06
64.10 + 1.52
68.37 + 0.62
81.08 + 0.93
49.96 + 3.27
65.91 £1.29
59.48 + 1.95

56.95 +7.99
49.88 + 3.74
57.72 + 3.26
2113+ 191
68.75 + 0.53
47.69 + 0.21
66.38 + 0.21
83.02 + 1.08
52.36 + 2.63
56.27 +1.23
5197 + 2.68

79.20 + 0.68
61.90 + 1.21
66.94 + 1.22
36.70 + 2.83
68.21 + 0.99
4714 + 0.62
out of time*
83.14 + 0.24
51.36 + 1.88
63.03 + 0.84
5492 + 294
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Displacement is an important hyperparameter.

p(n) x Haf(Aq)? — p(n,d) Z > by by Haf(Ay i)

n=0 {iy..i,}C Iy

BENCHMARKING
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Displacement is an important hyperparameter.

LOOPHaf(C) =ag a3 + agaaiz + ap3aqn
+aoppay1az3 + Ag1a22a33 + Appa11a33 + Appd2a13 + Agpd3z3alr + Ap3a1a22

+apod11a22033
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Low-photon features seem most important.

IMDB-BIN
FEATURES/ORBITS

01 — [0,0,0,0,0,0] _— =

04 —

feature average 0.30 —0.50  coefficients of 0.50 —3.0 perceptron
principle components weights

BENCHMARKING
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Take-away.

> (For ML crowd:) It seems that duplicating nodes is a useful strategy when
comparing graphs through subgraph structures.

> (For QML crowd:) Near-tearm quantum hardware can improve machine
learning of graph-structured data

BENCHMARKING
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