Title: How to use a Gaussian Boson Sampler to learn from graph-structured data

Speakers: Maria Schuld

Collection: Machine Learning for Quantum Design

Date: July 08, 2019 - 11:30 AM

URL: http://pirsa.org/19070005

Abstract: A device called a †Gaussian Boson Sampler' has initially been proposed as a near-term demonstration of classically intractable quantum computation. But these devices can also be used to decide whether two graphs are similar to each other. In this talk, I will show how to construct a feature map and graph similarity measure (or †graph kernel') using samples from an optical Gaussian Boson Sampler, and how to combine this with a support vector machine to do machine learning on graph-structured datasets. I will present promising benchmarking results and try to motivate why such a continuous-variable quantum computer can actually extract interesting properties from graphs.

Pirsa: 19070005 Page 1/32

How to use a Gaussian Boson Sampler to learn from graph-structured data

Maria Schuld

University of KwaZulu-Natal and Xanadu

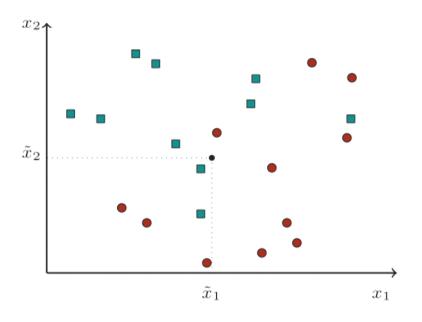
July 2019

Pirsa: 19070005 Page 2/32

IN A NUTSHELL

Machine learning uses distances between feature vectors.

K-Nearest-Neighbour

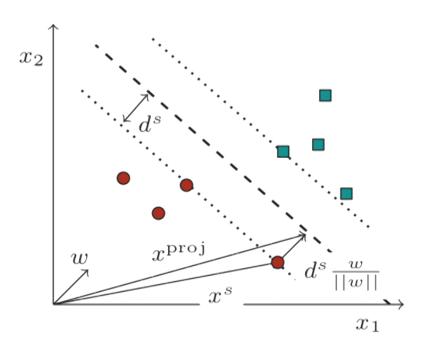


MOTIVATION

Pirsa: 19070005 Page 5/32

Machine learning uses distances between feature vectors.

Support Vector Machine

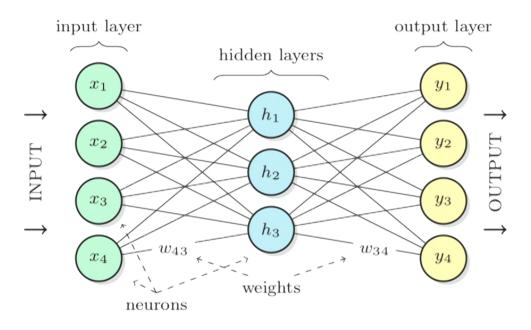


MOTIVATION

Pirsa: 19070005 Page 6/32

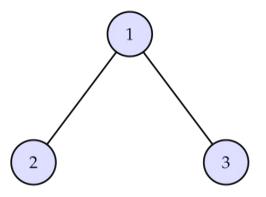
Machine learning uses distances between feature vectors.

Neural Network



MOTIVATION

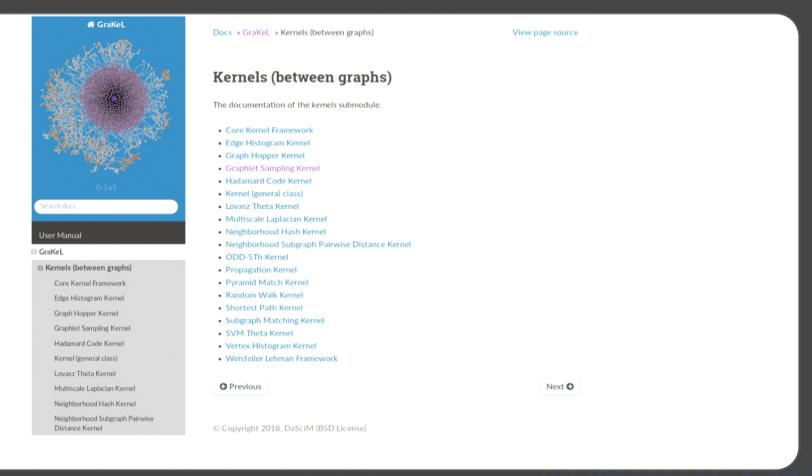
It is difficult to define distances between graphs.



$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

MOTIVATION

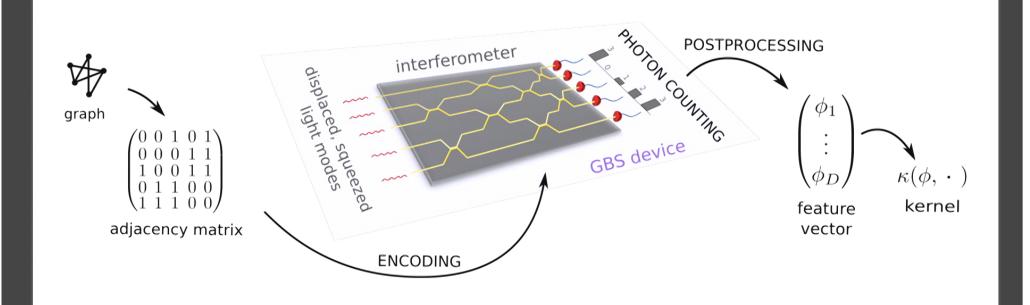
A gallery of graph kernels has been developed.



MOTIVATION

Pirsa: 19070005 Page 9/32

We can use quantum light to formulate a graph kernel.



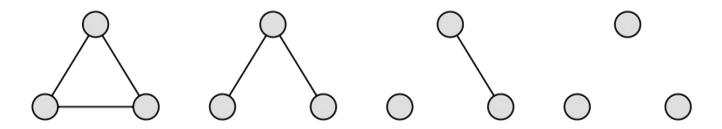
[Schuld, Bradler, Israel, Su, Gupt - arXiv:1905.12646]

MOTIVATION

Pirsa: 19070005 Page 10/32

The GBS graph kernel is very similar to a graphlet sampling kernel.

Graphlet Sampling Kernel

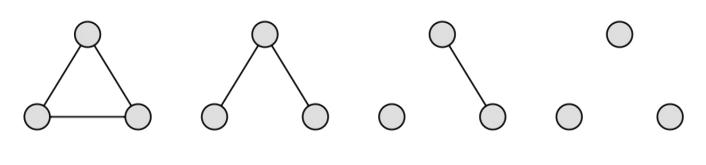


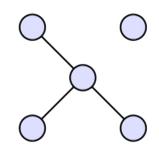
Shervashidze, Nino, et al. Artificial Intelligence and Statistics (2009).

MOTIVATION

The GBS graph kernel is very similar to a graphlet sampling kernel.

Graphlet Sampling Kernel



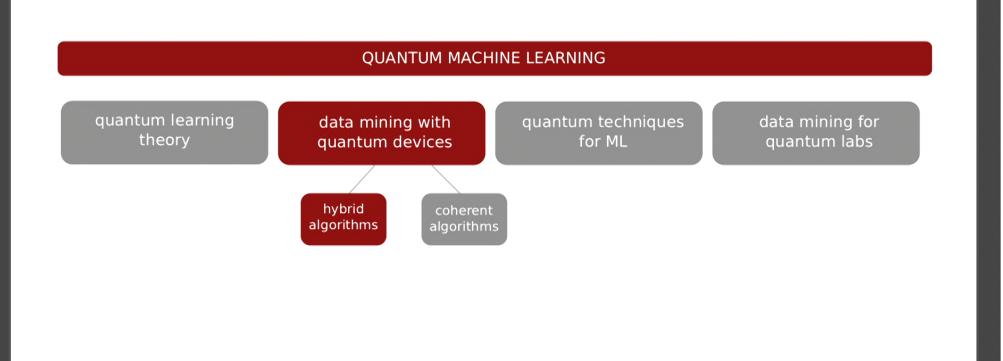


$$f = (0, 2, 3, 0)$$

Shervashidze, Nino, et al. Artificial Intelligence and Statistics (2009).

MOTIVATION

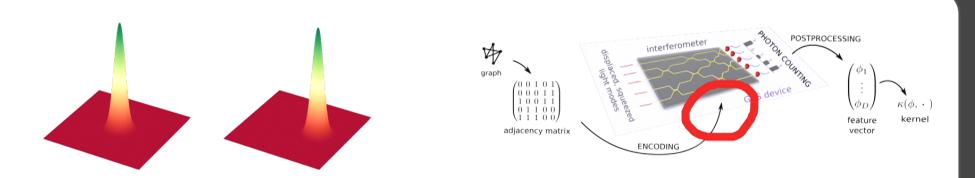
The work is part of hybrid/near-term QML.



MOTIVATION

Pirsa: 19070005 Page 13/32

A GBS device can encode a graph.



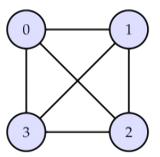
A Gaussian state of M optical modes is fully described by a *covariance matrix* $\sigma \in \mathbb{R}^{2M \times 2M}$ as well as a *displacement vector* $d \in \mathbb{R}^{2M}$.

We can associate such a state with an adjacency matrix A via

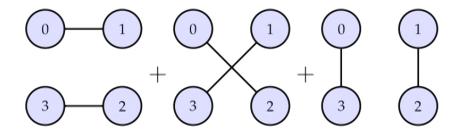
$$\sigma = (\mathbb{1} - X\tilde{A})^{-1} - \frac{\mathbb{1}}{2}$$
, with $X = \begin{pmatrix} 0 & \mathbb{1} \\ \mathbb{1} & 0 \end{pmatrix}$, $\tilde{A} = c \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}$.

GBS KERNEL

The Hafnian is related to the number of perfect matchings.



$$A = \begin{pmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{pmatrix}$$

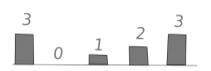


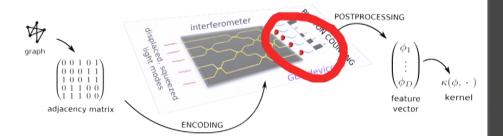
$$Haf(A) = a_{01}a_{23} + a_{02}a_{13} + a_{03}a_{12}$$

GBS KERNEL

Pirsa: 19070005 Page 15/32

The photon counting distribution depends on the Hafnian.





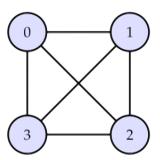
Let $\mathbf{n} = (n_1, ..., n_M)$, $n_m \in \mathbb{N}$ be a "photon click pattern" measured by M photon detectors. The probability of this measurement is given by

$$p(\mathbf{n}) \propto \mathrm{Haf}^2(A_\mathbf{n})$$

GBS KERNEL

Pirsa: 19070005 Page 16/32

A_n is an (extended) subgraph of A.



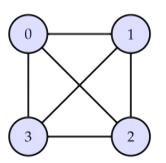
$$A_{[1,1,1,1]} = \begin{pmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$A_{[0,1,1,0]} = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right)$$

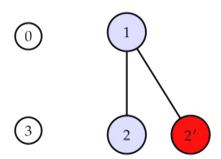
GBS KERNEL

Pirsa: 19070005 Page 17/32

A_n is an (extended) subgraph of A.



$$A_{[1,1,1,1]} = \begin{pmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{pmatrix}$$



$$A_{[0,1,2,0]} = \begin{pmatrix} a_{11} & a_{12} & a_{12'} \\ a_{21} & a_{22} & a_{22'} \\ a_{2'1} & a_{2'2} & a_{2} \end{pmatrix}$$

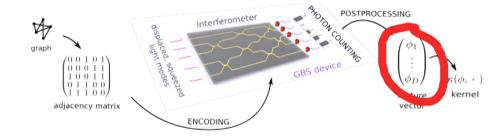
GBS KERNEL

Pirsa: 19070005 Page 18/32

	n	$ \mathbf{n} $	$A_{\mathbf{n}}$	$\operatorname{Haf}(A_{\mathbf{n}})$
	[0, 0, 0]	0	000	0
	[1, 0, 0]		••	0
	[0, 1, 0]	1	00	0
·	[0, 0, 1]		• 0	0
ginal graph = 🕰	[1, 1, 0]		° \$	1
	[1, 0, 1]	2	₽ ∘	1
	[0, 1, 1]		·	1
	[2,0,0]		0 0	0
	[0, 2, 0]	2	0	0
	[0, 0, 2]		•0	0

GBS KERNEL

We summarise photon events to orbits.



An *orbit* is a set of photon click events which are permutations of each other.

GBS KERNEL

Pirsa: 19070005 Page 20/32

We summarise photon events to orbits.

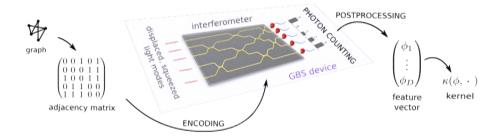
١					
ï	٩	ŀ			
Ä	٩	١	ļ		

$O_{\mathbf{n}^*}$	\mathbf{n}	$ \mathbf{n} $	$A_{\mathbf{n}}$	$\operatorname{Haf}(A_{\mathbf{n}})$
$O_{[0,0,0]}$	[0, 0, 0]	0	00	0
	[1, 0, 0]		•	0
$O_{[1,0,0]}$	[0, 1, 0]	1	°•	0
	[0, 0, 1]		• 0	0
	[1, 1, 0]	2	° \$	1
$O_{[1,1,0]}$	[1, 0, 1]		? o	1
	[0, 1, 1]		·	1
	[2, 0, 0]	2	00	0
$O_{[2,0,0]}$	[0, 2, 0]		0	0
	[0, 0, 2]		•°0	0

$O_{\mathbf{n}^*}$	n	$ \mathbf{n} $	$A_{\mathbf{n}}$	$\operatorname{Haf}(A_{\mathbf{n}})$
$O_{[1,1,1]}$	[1, 1, 1]	3	A	0
	[2, 1, 0]		~	0
	[2, 0, 1]		? °0	0
Oracia	[1,2,0]	3	0	0
$O_{[2,1,0]}$	[1, 0, 2]		♥ 0	0
	[0, 2, 1]		0	0
	[0,1,2]		O	0
	[3, 0, 0]	3	0 0	0
$O_{[3,0,0]}$	[0, 3, 0]		0	0
	[0, 0, 3]		\ 00	0

GBS KERNEL

The probabilities of the orbits are the features of a graph.

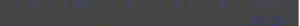


$$f_G = \begin{pmatrix} p(O_{[0,0,0]}) \\ \vdots \\ p(O_{[0,0,3]}) \\ \vdots \end{pmatrix}, \ \kappa(G,G') = \langle f_G, f_{G'} \rangle$$

GBS KERNEL

Pirsa: 19070005 Page 22/32

RUNTIME & INTERPRETATION



Pirsa: 19070005 Page 23/32

We can extract the features in the fraction of a second.

$$S = \left\lceil \frac{2(\log(2)D + \log(\frac{1}{\delta}))}{\epsilon^2} \right\rceil$$

For k = 8, D = 67, $\epsilon = 0.05$ and $\delta = 0.05$, we need 39,550 samples.

Photon number resolving detectors can accumulate about 10^5 samples per second.

RUNTIME

Pirsa: 19070005 Page 24/32

The features are related to matching polynomials.

► The coefficients $m(G, r) = \sum_{\mathbf{n} \in O_{[1,...,1,0,...]}} \operatorname{Haf}(A_{\mathbf{n}})$ of a *matching polynomial* count the number of r-matchings or "independent edge sets" in G – sets of r edges that have no vertex in common.

INTERPRETATION

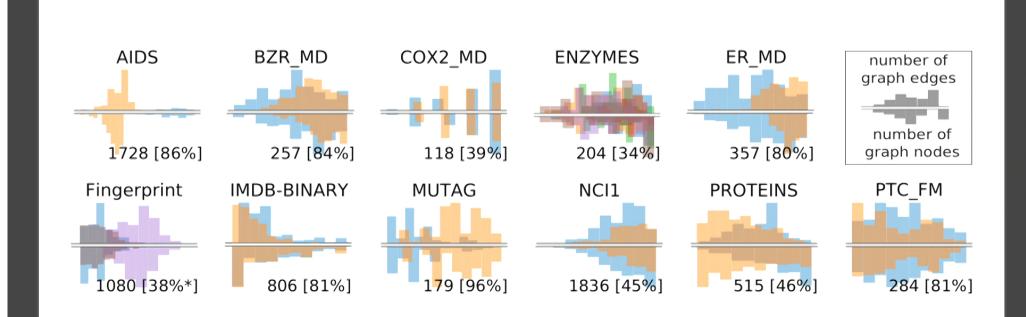
The features are related to matching polynomials.

- ► The coefficients $m(G, r) = \sum_{\mathbf{n} \in O_{[1,...,1,0,...]}} \operatorname{Haf}(A_{\mathbf{n}})$ of a matching polynomial count the number of r-matchings or "independent edge sets" in G sets of r edges that have no vertex in common.
- ► The higher-order moments $E[X_1^{(1)} ... X_1^{(n_1)} ... X_M^{(1)} ... X_M^{(n_M)}]$ of a multivariate Gaussian distribution $N(f_1(d), f_2(\sigma))$ are proportional to $Haf(A_n)$

INTERPRETATION

Pirsa: 19070005 Page 26/32

We can test the kernel on standard graph data sets.



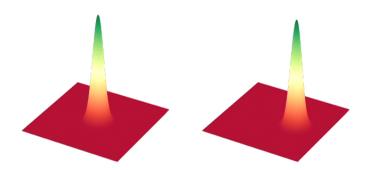
BENCHMARKING

The results are promising.

Dataset	GBS ($d = 0.0$)	GBS ($d = 0.25$)	GS	RW	SM
AIDS	99.60 ± 0.05	99.62 ± 0.03	98.44 ± 0.09	56.95 ± 7.99	79.20 ± 0.68
BZR_MD	62.73 ± 0.71	62.13 ± 1.44	60.60 ± 1.77	49.88 ± 3.74	61.90 ± 1.21
COX2_MD	44.98 ± 1.80	50.11 ± 0.97	55.04 ± 3.33	57.72 ± 3.26	66.94 ± 1.22
ENZYMES	22.29 ± 1.60	28.01 ± 1.83	35.87 ± 2.19	21.13 ± 1.91	36.70 ± 2.83
$ER_{-}MD$	70.36 ± 0.78	70.41 ± 0.47	65.65 ± 1.06	68.75 ± 0.53	68.21 ± 0.99
FINGERPRINT	65.42 ± 0.49	65.85 ± 0.36	64.10 ± 1.52	47.69 ± 0.21	47.14 ± 0.62
IMDB-BIN	64.09 ± 0.34	68.71 ± 0.59	68.37 ± 0.62	66.38 ± 0.21	out of time*
MUTAG	86.41 ± 0.33	85.58 ± 0.59	81.08 ± 0.93	83.02 ± 1.08	83.14 ± 0.24
NCI1	63.61 ± 0.00	62.79 ± 0.00	49.96 ± 3.27	52.36 ± 2.63	51.36 ± 1.88
PROTEINS	66.88 ± 0.22	66.14 ± 0.48	65.91 ± 1.29	56.27 ± 1.23	63.03 ± 0.84
PTC_FM	53.84 ± 0.96	52.45 ± 1.78	59.48 ± 1.95	51.97 ± 2.68	54.92 ± 2.94

BENCHMARKING

Displacement is an important hyperparameter.

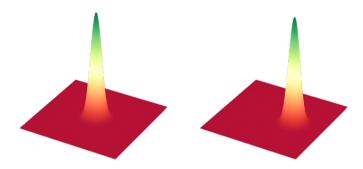


$$p(\mathbf{n}) \propto \operatorname{Haf}(A_{\mathbf{n}})^2 \to p(\mathbf{n}, \mathbf{d}) \propto \left[\sum_{n=0}^{M} \sum_{\{i_1..i_n\} \subseteq \mathfrak{I}_M} b_{i_1} \cdot \dots \cdot b_{i_n} \operatorname{Haf}(A_{\mathbf{n}-\{i_1,...,i_n\}}) \right]^2$$

BENCHMARKING

Pirsa: 19070005 Page 29/32

Displacement is an important hyperparameter.



LOOPHaf(C) =
$$a_{01}a_{23} + a_{02}a_{13} + a_{03}a_{12}$$

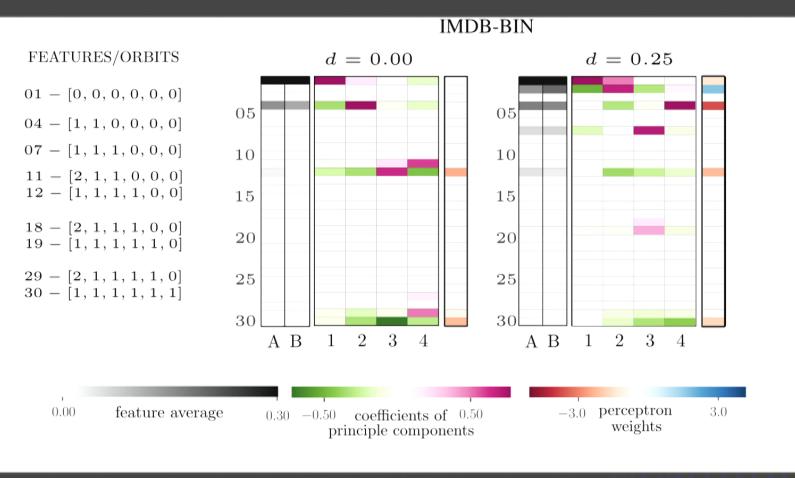
+ $a_{00}a_{11}a_{23} + a_{01}a_{22}a_{33} + a_{02}a_{11}a_{33} + a_{00}a_{22}a_{13} + a_{00}a_{33}a_{12} + a_{03}a_{11}a_{22}$
+ $a_{00}a_{11}a_{22}a_{33}$

2

BENCHMARKING

Pirsa: 19070005 Page 30/32

Low-photon features seem most important.



BENCHMARKING

Pirsa: 19070005 Page 31/32

Take-away.

- ▶ (For ML crowd:) It seems that duplicating nodes is a useful strategy when comparing graphs through subgraph structures.
- ► (For QML crowd:) Near-tearm quantum hardware can improve machine learning of graph-structured data

BENCHMARKING

Pirsa: 19070005 Page 32/32