Title: Axion production and detection with superconducting RF cavities

Speakers: Vijay Narayan

Series: Particle Physics

Date: July 26, 2019 - 1:00 PM

URL: http://pirsa.org/19070001

Abstract: We propose a novel design of a laboratory search for axions based on photon regeneration with superconducting RF cavities. Our particular setup uses a toroid as a region of confined static magnetic field, while production and detection cavities are positioned in regions of vanishing external field. This permits cavity operation at quality factors of $Q \sim 10 \hat{A}^1 \hat{a}^{\bullet}$. The limitations due to fundamental issues such as signal screening and back-reaction are discussed, and the optimal sensitivity is calculated. This experimental design can potentially probe axion-photon couplings beyond astrophysical limits, comparable and complementary to next generation optical experiments.

Pirsa: 19070001 Page 1/34

New light boson?

Strong evidence for physics BSM. Where to look?

Physics in far UV can lead to low-energy observables, including new light degrees of freedom

Pirsa: 19070001 Page 2/34

New light boson?

Strong evidence for physics BSM. Where to look?

Physics in far UV can lead to low-energy observables, including new light degrees of freedom

Axions are a generic expectation

$$\mathcal{L} \supset \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} (\partial_{\mu} a)^2 - \frac{1}{2} m_a^2 a^2 + \frac{1}{4} g a F_{\mu\nu} \widetilde{F}^{\mu\nu}$$

Light, weakly-coupled particle. How to detect?

Pirsa: 19070001 Page 3/34

Coherent axion-photon conversion in static B_o

$$P_{a\to\gamma} \sim (gB_0L)^2 \sim 10^{-19} \left(\frac{g \text{ GeV}}{10^{-11}}\right)^2 \left(\frac{B_0}{5 \text{ T}}\right)^2 \left(\frac{L}{10 \text{ m}}\right)^2$$

Coherence if $\,qL \sim {m_a^2 L \over \omega} \lesssim 1\,$

Coherent axion-photon conversion in static B_o

$$P_{a\to\gamma} \sim (gB_0L)^2 \sim 10^{-19} \left(\frac{g \text{ GeV}}{10^{-11}}\right)^2 \left(\frac{B_0}{5 \text{ T}}\right)^2 \left(\frac{L}{10 \text{ m}}\right)^2$$

Coherence if $\,qL \sim {m_a^2 L \over \omega} \lesssim 1\,$

Pirsa: 19070001 Page 5/34

Coherent axion-photon conversion in static B_o

$$P_{a\to\gamma} \sim (gB_0L)^2 \sim 10^{-19} \left(\frac{g \text{ GeV}}{10^{-11}}\right)^2 \left(\frac{B_0}{5 \text{ T}}\right)^2 \left(\frac{L}{10 \text{ m}}\right)^2$$

Coherence if $qL \sim \frac{m_a^2 L}{\omega} \lesssim 1$

"Sun shining through a Wall"

[Irastorza et al, '17]

CAST: $g < 7.10^{-11} \text{ GeV}^{-1} \text{ for } m_a < eV$

(comparable to stellar cooling bounds)

Coherent axion-photon conversion in static B_o

$$P_{a\to\gamma} \sim (gB_0L)^2 \sim 10^{-19} \left(\frac{g \text{ GeV}}{10^{-11}}\right)^2 \left(\frac{B_0}{5 \text{ T}}\right)^2 \left(\frac{L}{10 \text{ m}}\right)^2$$

Coherence if $qL \sim \frac{m_a^2 L}{\omega} \lesssim 1$

"Sun shining through a Wall"

[Irastorza et al, '17]

CAST: $g < 7.10^{-11} \text{ GeV}^{-1} \text{ for } m_a < eV$

(comparable to stellar cooling bounds)

Coherent axion-photon conversion in static B_o

$$P_{a\to\gamma} \sim (gB_0L)^2 \sim 10^{-19} \left(\frac{g \text{ GeV}}{10^{-11}}\right)^2 \left(\frac{B_0}{5 \text{ T}}\right)^2 \left(\frac{L}{10 \text{ m}}\right)^2$$

Coherence if $qL \sim \frac{m_a^2 L}{\omega} \lesssim 1$

"Light shining through a Wall"

[van Bibber et al '87, ...]

Possible at optical or radio frequencies

Key point: need large EM fields to overcome small coupling

Pirsa: 19070001 Page 8/34

Optical vs. RF

[..., Graham et al '16]

Optical Cavities

 ω, L^{-1} are independent

ALPS: $g < 5.10^{-8} \text{ GeV}^{-1}$ for $m_a < \text{meV}$

Next generation with L \sim 100 m ALPS II (projected): g $< 2.10^{-11}$ GeV⁻¹

Pirsa: 19070001 Page 9/34

Optical vs. RF

[..., Graham et al '16]

 ω, L^{-1} are independent

ALPS: $g < 5.10^{-8} \text{ GeV}^{-1}$ for $m_a < \text{meV}$

Next generation with L \sim 100 m ALPS II (projected): g < 2.10⁻¹¹ GeV⁻¹

RF Cavities

$$\omega, L^{-1} \sim \mathcal{O}(\mathrm{GHz})$$

CROWS: $g < 10^{-7} \text{ GeV}^{-1}$ for $m_a < \mu eV$

This work: possibilities with superconducting RF technology?

See: [Bogorad, Hook, Kahn, Soreq, '19] for very distinct proposal

Page 10/34

Status of LSW

LSW with RF Cavities

Pirsa: 19070001 Page 11/34

LSW with RF Cavities

Pirsa: 19070001 Page 12/34

LSW with SRF Cavities

Normal conducting RF $Q \sim 10^5 - 10^6$

$$Q \sim 10^5 - 10^6$$

Superconducting RF
$$Q \sim 10^{10}-10^{12}$$

$$Q \sim 10^{10} - 10^{12}$$

LSW with SRF Cavities

Normal conducting RF $Q \sim 10^5 - 10^6$

Superconducting RF $Q \sim 10^{10}-10^{12}$

B > O(0.2 T) critical field, flux penetration degrades Q

Challenge: re-design such that large B and SRF can co-exist

Pirsa: 19070001 Page 14/34

New Design for LSW with SRF **Conversion Region Detection Cavity Production Cavity**

Pirsa: 19070001 Page 15/34

New Design for LSW with SRF

Pirsa: 19070001 Page 16/34

New Design for LSW with SRF

Pirsa: 19070001 Page 17/34

New Design for LSW with SRF

Pirsa: 19070001 Page 18/34

Axion Electrodynamics

Axion EOM:
$$(\Box + m_a^2)a(x) = -g\vec{E} \cdot \vec{B}$$

Modifies Maxwell:
$$\vec{\nabla} \cdot \vec{E} = -g\vec{B} \cdot \vec{\nabla} a$$

$$\vec{\nabla} \times \vec{B} = \frac{\partial \vec{E}}{\partial t} - g \left(\vec{E} \times \vec{\nabla} a - \vec{B} \frac{\partial a}{\partial t} \right)$$

Axion Electrodynamics

Axion EOM:
$$(\Box + m_a^2)a(x) = -g\vec{E} \cdot \vec{B}$$

Modifies Maxwell:
$$\vec{\nabla} \cdot \vec{E} = -g\vec{B} \cdot \vec{\nabla} a$$

$$\vec{\nabla} \times \vec{B} = \frac{\partial \vec{E}}{\partial t} - g \left(\vec{E} \times \vec{\nabla} a - \vec{B} \frac{\partial a}{\partial t} \right)$$

Axion Production
$$\implies a(x) = -ge^{i\omega t} \int_{\mathrm{pc}} d^3y \ \frac{e^{ik|\vec{x}-\vec{y}|}}{4\pi|\vec{x}-\vec{y}|} (\vec{E}\cdot\vec{B})$$

SRF Axion Source

(1) Axion source without external B₀

Cavity mode(s) such that E.B not identically vanishing

Fundamentally limited by SRF critical field (independent of Q, input power, etc.)

$$(\vec{E} \cdot \vec{B})_{\rm pc} \lesssim (0.2 \text{ T})^2$$

Pirsa: 19070001 Page 21/34

SRF Axion Source

(1) Axion source without external B_0

Cavity mode(s) such that E.B not identically vanishing

Fundamentally limited by SRF critical field (independent of Q, input power, etc.)

$$(\vec{E} \cdot \vec{B})_{\rm pc} \lesssim (0.2 \text{ T})^2$$

Compare with normal conducting RF with external B₀

$$(\vec{E} \cdot \vec{B}) \sim (0.1 \text{ T})^2 \left(\frac{P_{\text{input}}}{100 \text{ W}}\right)^{\frac{1}{2}} \left(\frac{Q_{\text{pc}}}{10^5}\right)^{\frac{1}{2}} \left(\frac{B_0}{5 \text{ T}}\right)$$

Real advantage of high-Q is on detection side!

Pirsa: 19070001 Page 22/34

Gapped Toroid Conversion Region

(2) Confine large static B₀

Generated by wrapped DC current-carrying superconducting wires

Pirsa: 19070001 Page 23/34

Gapped Toroid Conversion Region

(2) Confine large static B₀

Generated by wrapped DC current-carrying superconducting wires

(3) Allow RF signal to propagate out

Any leakage of B₀ outside due to fringe effects, can be made small

Pirsa: 19070001 Page 24/34

Conversion Region

Meissner effect: B_a is screened outside Sets up super-current I_a on inner surface

For sufficiently large frequencies:

Ia has significant spatial gradients Signal parametrically suppressed

Pirsa: 19070001 Page 25/34

Conversion Region

Meissner effect: B_a is screened outside Sets up super-current I_a on inner surface

For sufficiently large frequencies:

Ia has significant spatial gradients Signal parametrically suppressed

Pirsa: 19070001 Page 26/34

Signal Pickup

(4) Couple signal to SRF detection cavity

$$B_a \sim \frac{g^2 B_{\rm pc}^2 B_0}{\omega^2} \sim 10^{-26} \text{ T} \left(\frac{g \text{ GeV}}{10^{-11}}\right)^2 \left(\frac{B_{\rm pc}}{0.2 \text{ T}}\right)^2 \left(\frac{B_0}{5 \text{ T}}\right)$$

Amplify RF signal by Q?

Toroid is not a perfect "source" - non-negligible back-reaction

Must account for toroid impedance as well

Pirsa: 19070001 Page 27/34

Signal Pickup

(4) Couple signal to SRF detection cavity

Gap capacitance

Toroid inductance

Superconductor

$$C_t \sim 10^{-2} \text{ pF}\left(\frac{d}{\text{mm}}\right) \quad L_t \sim 125 \text{ nH}\left(\frac{R}{10 \text{ cm}}\right) \quad R_t \gtrsim 10^{-9} \Omega$$

$$L_t \sim 125 \text{ nH} \left(\frac{R}{10 \text{ cm}}\right)$$

$$R_t \gtrsim 10^{-9} \ \Omega$$

Adjust pickup to impedance match $\,L_p \sim rac{QR_t}{\omega}\,$

$$\Rightarrow P_{\max} \sim |I_a|^2 \frac{(L_t \omega)^2}{R_t}$$

Pirsa: 19070001 Page 29/34

Adjust pickup to impedance match $\,L_p \sim rac{QR_t}{\omega}\,$

$$\Rightarrow P_{\max} \sim |I_a|^2 \frac{(L_t \omega)^2}{R_t}$$

Maintain O(GHz) natural SRF frequency $\,\omega \sim \omega_0 \sqrt{1+rac{L}{L_p}}\,$

$$\Rightarrow P_{\max} \sim |I_a|^2 Q L_t \omega_0$$

Adjust pickup to impedance match $\,L_p \sim rac{QR_t}{\omega}\,$

$$\Rightarrow P_{\max} \sim |I_a|^2 \frac{(L_t \omega)^2}{R_t}$$

Maintain O(GHz) natural SRF frequency $\,\omega \sim \omega_0 \sqrt{1+rac{L}{L_p}}\,$

$$\Rightarrow P_{\max} \sim |I_a|^2 Q L_t \omega_0$$

Optimal signal

$$P_{
m signal} \sim |I_a|^2 (L_t \omega) \cdot \min \left\{ rac{L_t \omega}{R_t}, \; Q
ight\}$$
Donut Cavity limited limited

Narrowband noise

$$P_{
m noise} = rac{T_{
m sys}}{t_{
m int}} ~~ T_{
m sys} \gtrsim \omega \sim 50 \,\, {
m mK}$$
 Quantum limited

Pirsa: 19070001 Page 32/34

Projected Sensitivity $B_{pc} = 0.2 \text{ T}$ $B_0 = 5 \text{ T}$ $L_t = 125 \text{ nH}$ $T_{\text{sys}} = 0.1 \text{ K}$ $t_{\text{int}} = 1 \text{ year}$ (1) $R_t = 100 \text{ n}\Omega \text{ and } Q \ge 10^{10}$ Axion-photon coupling g (GeV⁻¹) 10^{-10} CAST, Stellar Cooling SRF (1) **ALPS I** 10^{-11} 10^{-8} 10^{-7} 10^{-5} 10^{-6} 10^{-4} Mass m_a (eV)

Projected Sensitivity $B_{pc} = 0.2 \text{ T}$ $B_0 = 5 \text{ T}$

$$L_t = 125 \text{ nH}$$

$$L_t = 125 \text{ nH}$$
 $T_{\text{sys}} = 0.1 \text{ K}$ $t_{\text{int}} = 1 \text{ year}$

(2)
$$R_t = n\Omega$$
 and $Q \ge 10^{12}$

