Title: Lecture 7

Speakers: Crystal Senko

Collection: Many-Body States and Dynamics Workshop II

Date: June 13, 2019 - 11:30 AM

URL: http://pirsa.org/19060033

Pirsa: 19060033

Pirsa: 19060033 Page 2/37

Pirsa: 19060033

Themes of our research

Qu**d**it based quantum computing

Open access quantum computing

Pirsa: 19060033 Page 4/37

Themes of our research

Qu**d**it based quantum computing

Open access quantum computing

Collaboration with Rajibul Islam

$$\frac{|4\rangle}{|0\rangle} - \frac{|2\rangle}{|1\rangle} - \frac{|4\rangle}{|1\rangle}$$
F=2

Why not?
$$6S_{1/2}$$
F=1
$$|3\rangle$$

Pirsa: 19060033

To start: why qudits?

• Increase Hilbert space: 2^N (qubits) vs $\frac{d}{d}$ (qudits)

$$2^{10} = 1024$$

 $3^{10} = 59049$
 $5^{10} = 9765625$

²Fedorov, A. et. al., 2011. *Nature, 481*(7380), 170-172. doi:10.1038/nature10713

³Parasa et. al., 2011, IEEE 41 https://doi.org/10.1109/ISMVL.2011.47

⁴Campbell, 2014, PRL https://doi.org/10.1103/PhysRevLett.113.230501

⁵Andrist et. al., 2015, PRA https://doi.org/10.1103/PhysRevA.91.042331

⁶Lanyon et. al., 2008, NaturePhysics https://doi.org/10.1038/nphys1150

3

Pirsa: 19060033

To start: why qudits?

- Increase Hilbert space: 2^N (qubits) vs d^N (qudits)
- More efficient algorithm
 - Toffoli gate: 16 gates (2-level) vs 6 gates (3-level)²
 - More accurate quantum phase estimation³
- More forgiving error threshold for error correcting codes^{4,5,6}

 $2^{10} = 1024$ $3^{10} = 59049$ $5^{10} = 9765625$

Number of lons vs d for QPE up to 5 Decimal Points

Figure adapted from [3]

²Fedorov, A. et. al., 2011. *Nature*, 481(7380), 170-172. doi:10.1038/nature10713

3

Pirsa: 19060033 Page 7/37

³Parasa et. al., 2011, IEEE 41 https://doi.org/10.1109/ISMVL.2011.47

⁴Campbell, 2014, PRL https://doi.org/10.1103/PhysRevLett.113.230501

⁵Andrist et. al., 2015, PRA https://doi.org/10.1103/PhysRevA.91.042331

⁶Lanyon et. al., 2008, NaturePhysics https://doi.org/10.1038/nphys1150

- How do you perform:
 - State preparation and measurement
 - Single-qudit and two-qudit gates

Pirsa: 19060033 Page 8/37

- How do you perform:
 - State preparation and measurement
 - Single-qudit and two-qudit gates
- Error rates will be worse! Too much worse?

Pirsa: 19060033 Page 9/37

- How do you perform:
 - State preparation and measurement
 - Single-qudit and two-qudit gates
- Error rates will be worse! Too much worse?

Fault tolerance thresholds?

Atomic physics limitations?

Control noise limitations?

Pirsa: 19060033 Page 10/37

- How do you perform:
 - State preparation and measurement
 - Single-qudit and two-qudit gates
- Error rates will be worse! Too much worse?

Pirsa: 19060033 Page 11/37

Caveats to our "fidelity" estimates

What we did here: fidelity F

- Specific experimental protocol
- Upper bound on atomic structure limitations
- Upper bound on noise sources we don't know how to improve

Pirsa: 19060033 Page 12/37

Caveats to our "fidelity" estimates

What we'll get in the lab: fidelity <F

- All the limitations we estimated, plus:
- Control noise that can be engineered out (voltage noise, etc)

What we did here: fidelity F

- Specific experimental protocol
- Upper bound on atomic structure limitations
- Upper bound on noise sources we don't know how to improve

5

Pirsa: 19060033 Page 13/37

Caveats to our "fidelity" estimates

What we'll get in the lab: fidelity <F

- All the limitations we estimated, plus:
- Control noise that can be engineered out (voltage noise, etc)

What we did here: fidelity F

- Specific experimental protocol
- Upper bound on atomic structure limitations
- Upper bound on noise sources we don't know how to improve

"Fundamental" limitations: fidelity probably >F

- Lots of parameters to optimize
- More clever protocols may be available

Pirsa: 19060033 Page 14/37

Need more than one bit of information!

- 6P_{1/2} —
- 1. Shelve states in $S_{1/2}$ to corresponding metastable states in $D_{5/2}$ except for $|0\rangle$.
- 2. Collect fluorescence from all remaining states in $S_{1/2}$.
- 3. Bring back state $|1\rangle$ to $S_{1/2}$ level.
- 4. Repeat steps 2 and 3 for different states.

$$6S_{1/2}\overline{|0\rangle}$$
 $\overline{|1\rangle}$ $\overline{|2\rangle}$

Need more than one bit of information!

- 6P_{1/2} ———
- 1. Shelve states in $S_{1/2}$ to corresponding metastable states in $D_{5/2}$ except for $|0\rangle$.
- 2. Collect fluorescence from all remaining states in $S_{1/2}$.
- 3. Bring back state $|1\rangle$ to $S_{1/2}$ level.
- 4. Repeat steps 2 and 3 for different states.

35 s lifetime
$$\frac{|1'\rangle}{} \frac{|2'\rangle}{} 5D_{5/2}$$

- Need more than one bit of information!
- 1. Shelve states in $S_{1/2}$ to corresponding metastable states in $D_{5/2}$ except for $|0\rangle$.
- 2. Collect fluorescence from all remaining states in $S_{1/2}$.
- 3. Bring back state $|1\rangle$ to $S_{1/2}$ level.
- 4. Repeat steps 2 and 3 for different states.

1762 nm

$$6S_{1/2} \overline{|0\rangle} \quad \overline{\|1\rangle} \quad --$$

- Need more than one bit of information!
- 1. Shelve states in $S_{1/2}$ to corresponding metastable states in $D_{5/2}$ except for $|0\rangle$.
- 2. Collect fluorescence from all remaining states in $S_{1/2}$.
- 3. Bring back state $|1\rangle$ to $S_{1/2}$ level.
- 4. Repeat steps 2 and 3 for different states.

6

Pirsa: 19060033 Page 18/37

• Error sources:

- Finite initial frequency detuning
- Landau-Zener probability of diabatic transition
- Dephasing due to laser linewidth
- Off-resonant coupling

d (dimension)	Fidelity F	Error (1-F)
3	99.78%	2E-3
5	99.15%	8E-3
7	98.51%	1.5E-2

Pirsa: 19060033

• Error sources:

- Finite initial frequency detuning
- Landau-Zener probability of diabatic transition
- Dephasing due to laser linewidth
- Off-resonant coupling

d (dimension)	Fidelity F	Error (1-F)
3	99.78%	2E-3
5	99.15%	8E-3
7	98.51%	1.5E-2

Pirsa: 19060033

Single Qudit Gate

- With a fully connected graph, you can do any single-qudit unitary.
- Need $\frac{d(d-1)}{2} + 2(d-1)$ 2-level transitions $\widehat{U} = \widehat{V}_{d(d-1)/2} ... \widehat{V}_2 \widehat{V}_1 \widehat{D}$

$$\hat{V} = \exp\left(i\theta\left(e^{i\varphi}|j\rangle\langle k| + e^{-i\varphi}|k\rangle\langle j|\right)\right)$$

Schirmer et. al., 2001, Journal of Physics A stacks.iop.org/JPhysA/35/8315

8

Pirsa: 19060033 Page 21/37

Single Qudit Gate

- Error sources:
 - Magnetic field noise
 - Off-resonant coupling to wrong states

Gate	Error (d=3)	Error (d=5)
X	6.25E-05	6.41E-04
Υ	8.93E-05	0.001379
Z	3.51E-05	8.65E-04
Т	4.71E-05	8.10E-04
F	1.13E-04	0.001323

Pirsa: 19060033 Page 23/37

Entangling gate

- Laser-based gate protocol
- Interaction mediated by Coulomb forces
- Form of entangling gate (maps to SUM gate with single qudit operations):

$$U = \exp\left(i\theta \left[S_x^{(1)} + S_x^{(2)}\right]^2\right)$$

10

Pirsa: 19060033 Page 24/37

Entangling gate

- Laser-based gate protocol
- Interaction mediated by Coulomb forces
- Form of entangling gate (maps to SUM gate with single qudit operations):

$$U = \exp\left(i\theta \left[S_x^{(1)} + S_x^{(2)}\right]^2\right)$$

Overall fidelity:

- 99.27% for d = 3.
- 32% for d=5 (with experimental configuration we know how to implement)
- 96.6% for d=5 (with a configuration we don't know how to do could probably be improved)

10

Pirsa: 19060033 Page 25/37

Entangling gate fidelity

Error Source	d = 3	d = 5
Lamb-Dicke approximation	7×10^{-4}	5.8×10^{-3}
Rotating wave approximation	5×10^{-4}	2.2×10^{-3}
Spectator phonon mode	2.9×10^{-3}	1.26×10^{-2}
Photon scattering	8×10^{-4}	1.6×10^{-3}
Imperfect cooling	1×10^{-4}	2.7×10^{-3}
Motional heating	3.3×10^{-3}	4.6×10^{-3}
Magnetic field noise	< 10 ⁻⁴	$< 10^{-4}$
Off-resonant frequencies	NA	6.8×10^{-1}

Overall fidelity:

- 99.27% for d = 3.
- 32% for d=5 (with experimental configuration we know how to do)
- 96.6% for d=5 (with a configuration we don't know how to do)

Pirsa: 19060033 Page 26/37

Summary for qudits

- Possible to obtain 99% fidelity for 3-level qudits
- Higher dimensions may also be possible

	Fidelity		
d (dimension)	Measurement	Single-qudit gate	2-qudit gate
3	99.78%	99.98%	99.27%
5	99.15%	99.87%	32% (*96.63%)
7	98.51%	Not investigated	Not investigated

Pirsa: 19060033

Themes of our research

Qu**d**it based quantum computing

$$\begin{array}{c|c}
 & \underline{|4\rangle} \\
\hline
|0\rangle & - & F=2 \\
\hline
 & Why not? & 6S_{1/2} \\
\hline
 & \overline{|1\rangle} & - & F=1 \\
\hline
 & \overline{|3\rangle} & F=1
\end{array}$$

Open access quantum computing

Pirsa: 19060033 Page 28/37

Overview of QuantumIon goals

- 10+ qubit ion trap quantum computer
 - Individual qubit control
 - Entangling gates between any pair of qubits
 - Proven architecture (see e.g. UMD, IonQ)
- Remote access platform
- Designed for multiple types of experiment

Quantum error correction

Quantum algorithms

Pulse shaping, gate optimizations

Quantum optics, trapped ion physics

Many more

14

Pirsa: 19060033 Page 29/37

- · Desired Traits
 - Abstraction layers

16

Pirsa: 19060033 Page 30/37

- · Desired Traits
 - Abstraction layers

16

Pirsa: 19060033 Page 31/37

Desired Traits

- Abstraction layers
- Sub-nanosecond timestamps of operation
- Support for multiple languages (e.g. Python, Matlab, GUI???)
- Strong separation between user code & QI machine code
- Internal consistency

Pirsa: 19060033

Desired Traits

- Abstraction layers
- Sub-nanosecond timestamps of operation
- Support for multiple languages (e.g. Python, Matlab, GUI???)
- Strong separation between user code & QI machine code
- Internal consistency
- Current languages (IBM, Google, Microsoft) insufficient
- New language of our own
 - · Laser pulses are precision timed 'events'
 - Support classical/quantum decisions, loops, etc
 - Allocated resource strategy
 - XML Intermediate language
 - · Support timing arithmetic on named constants (e.g. calibration params)
 - Function/macro definitions for design re-use & abstraction

Class Abstraction Lay...

Circuit Layer

Gate Layer

Operator Layer

Timing Layer

Hardware Layer

Pirsa: 19060033

Example User Code

```
// Example program a few pulses and AWG followed by a CCD image capture
// Begin by connecting to the machine this object will have all future transactions
qi = QuantumIon.connect("Username", "Password");
program = qi.CreateQuantumIonExperiment();
imq = qi.AllocateQuantumIonImaqe(); // the CCD mesurement reports an image. this allocates space
MyPulseShape = qi.CreateAWGWaveForm( qi, "mine.mat" );// same for AWG. It is stored on the QI machine
program.AddSteps(
                       // Create program
     qi.CreateStandardTrapPrepStep(),
                                                                // ensures the trap is ready
                                                                // state preparation
     qi.CreateStatePrepStep(),
     qi.CreateSimpleLaserPulseStep( 0.2, 0.3 ),
                                                                // pulse @ t=0.2, duration 0.3
     qi.CreateSimpleLaserPulseStep( 0.8, 0.5*qi.cal.rabiperiod), // pulse 0 t=0.8, duration calculated
     qi.CreateAWGLaserFulseStep( 1.0, MyPulseShape ),
                                                               // AWG pulse @ t=1.0
     qi.CCDRawImageMeasurementStep( 1.1, img )
                                                                // CCD raw image and tag for saving later
// perform 10,000 statistical averages
for(int n = 0; n<10000; n++)
     qi.QueueProgram( program ); // enqueue on machine
                                  // run program
     result = img.download();
     DoStuffWithImage_IDontCareItsOnYourPCNow();
                                                   // post process
qi.disconnect();
```

Pirsa: 19060033

Desired Traits

- Abstraction layers
- Sub-nanosecond timestamps of operation
- Support for multiple languages (e.g. Python, Matlab, GUI???)
- Strong separation between user code & QI machine code
- Internal consistency
- Current languages (IBM, Google, Microsoft) insufficient
- New language of our own
 - · Laser pulses are precision timed 'events'
 - Support classical/quantum decisions, loops, etc
 - Allocated resource strategy
 - XML Intermediate language
 - · Support timing arithmetic on named constants (e.g. calibration params)
 - Function/macro definitions for design re-use & abstraction

Circuit Layer

Circuit Layer

Gate Layer

Operator Layer

Hardware Layer

Pirsa: 19060033

How you run an algorithm:

- Describe quantum program
 - "Get the trap ready"
 - "Prepare the qubits in |0>"
 - Apply laser pulse from t=100 us to t=200 us
 - ...
 - Measure qubits at t=300 us
- Hand us the quantum program
- Download the measurement results

Pirsa: 19060033

Acknowledgement

Undergraduate students: Nigel Andersen, Kieana Fana, Ahmed Shalabi Graduate students: Noah Greenberg, Rich Rademacher, Brendan White

Post-Doc: Matthew Day

Principal Investigator: Crystal Senko

· Quantumion: collaboration with Rajibul Islam

Funding: We acknowledge support from the National Sciences and Engineering Research Gouncil of Canada and the Canada First Research Excellence Fund.

Pirsa: 19060033 Page 37/37