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Abstract: The need for a time-shift invariant formulation of quantum theory arises from fundamental symmetry principles as well as heuristic
cosmological considerations. Such a description then leaves open the question of how to reconcile global invariance with the perception of change,
locally. By introducing relative time observables, we are able to make rigorous the Page-Wootters conditional probability formalism to show how
local Heisenberg evolution is compatible with global invariance.
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Dedicated to the memory of Paul Busch, 1955-2018.
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Ordinary Quantum Framework

@ Hilbert space H

e States pe T(H)

@ Outcomes (2, F)

@ Observables E: F - L(H)

e Probabilities X - tr[pE(X)]
@ Symmetry G — autL(H)
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What is observable under symmetry?

@ First guess: invariants
@ Problem: (apparently) very little left

@ No coherent states (phase shift invariance)

Very “few" superpositions
No localised particles (shift invariance)
No dynamics, etc.

Ordinary framework very successful... how can it be?

Look to classical situation
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Classical Quantities and Symmetry

Symmetry, relativity, reference frames are related:
@ Positions, angles, event times, velocities are relative
e G = Galilei group

@ Invariant once frame-dependence is accounted for: apply symmetry at
composite level

“Absolute” ~ relative:
@ Reference frame = inertial frame
e Coordinate system or “suitable” classical particle
@ Particle localised with respect to all classical variables
e Can “externalise” particle/RF and work in “absolute” sense

e Full equivalence of pictures!
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Symmetry, Relativisation, Restriction, Localisation

Phase

o Number observables Ns, Nz, N, groups Us(6) := eMs? etc
e "Absolute” phase (POM) F of & characterised by
Us(0)F(X)Us(0)" = F(X +0)
@ S alone: observables commute with Ng (invariant under phase-shifts)
e pand 7s,(p) := %, PapPp cannot be distinguished

@ Coherent and incoherent states are observationally equivalent (~ class
of states)

e c.f. “optical coherence controversy”. Isn't coherence “real”?!

@ Answer comes with relative quantities, rethinking definition of
“coherent” .

@ System-plus-reference S + R represented by H = Hg ® Hr

Relative Quantum Time, Pl 2019

Pirsa: 19050039 Page 8/29



Symmetry, Relativisation, Restriction, Localisation

Relativisation, % map

Can relativise “absolute” quantities to give relative/invariant ones:

*(A) = [ Us(g)AUs(g)" ® F"(dg) (1)

e Works for any locally compact metrizable group G (finite, R, Sj,...)
e Unital, *-preserving, normal, completely positive...

e * Can choose Hg = L?(G), System of Imprimitivity,
(AR L*(G))C2GuA ¥: A GrA..

@ ¥ functions as expected in familiar cases: position, angle, phase etc.

e What is the relationship between “absolute” description (A) and
relative description (¥(A))?
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Symmetry, Relativisation, Restriction, Localisation

Restriction

Compare like with like: “restrict” relative quantities of S + R to quantities
of §. Precisely:
@ Fix a state pr of R
@ Define "restriction map” (conditional expectation)
M L(H) > L(Hs)
o [,,(A® B) = Atr[prB], extend by linearity, continuity
@ Gives description in terms of S, contingent on state pr of R

e Can now find conditions under which A and (I',,, c¥)(A) are close

(and conditions under which they are not).

R
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Symmetry, Relativisation, Restriction, Localisation

Localisation /delocalisation
Is there pr for which “absolute” A is close (in appropriate sense) to
restricted, relativised A? Yes! Subject to a condition.

o Need “norm-1" property for F%: for any X € B(G) for which
FR(X) %0, 3(¢i) e Hr s.t. limiseo { i |[FR(X)ei ) = 1.
e Localisability condition - satisfied for PvMs, “canonical phase”, etc...

@ Then (e.g., for phase), choose X “very small set” containing origin,
(o) localising sequence

weak

e Find that (I, 0¥)(A) — A as i - oo.

e E.g., FR “canonical phase”, limit taken across a set of high-amplitude
coherent states

@ Other extreme: take Tr.(pr) as reference state:
(o) ¥)e(p) = o f51 U0) pU(0)d0 = 75.(p) (2
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Story so far

e Observables are invariant quantities (of S +R)

e “Absolute” quantities of S represent relative (invariant) observables
of S+ R.

e Good representation/approximation comes with good localisation at
group identity (i.e., “zero" of phase)

@ Good localisation allows externalisation of RF, as in classical case
@ Justifies use of ordinary quantum framework for calculations

e Bad localisation is bad reference, a quantum restriction arising from
uncertainty relation
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Hold on...

Some of this smells circular:

@ In order to speak of “absolute” quantities and coherent/localized
states of & as representing their invariant counterparts of S + R,
“absolute” quantities and coherent/localized states are presumed for
R (cf superselection rule “debate”.)

@ Require a fully relational picture

@ "“Absolute” states of S represent relative (invariant) states of the
form 7.(p ® P[¢;i])
@ Localisation and coherence are relational notions

@ Properties of pairs of systems (cf entanglement)
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Resolution: fully relational picture

Mutual Coherence
T.f.a.e.:

© 1 invariant observable E of § + R and X such that
tr[(7s+(ps) ® pr)E(X)] # tr [(ps ® pr)E(X)]
@ 3 invariant observable E of § + R and X such that
tr[(ps ® TR+ (PR)E(X)] # tr[(ps ® pr)E(X)]
Therefore,

@ ps is coherent “relative to" pg if and only if pr is coherent “relative
to" ps

e Better: (ps,pr) coherent if (1) (or 2) holds
@ Truly relational: depends on & and R

@ Same for localisation

_Iim ¥*(T>v(f)5 X P[(/),]) = pPS (3)

|— 00

@ Any state of S can be approximated by invariant states of S + R.
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Application: Optical Coherence Controversy

Is a laser beam coherent?
Consider for &
o “Absolute” phase observable FS
e Coherent state |3) = 3., cp|n)
Construct relative phase observable F7 =¥ o FS,

I

(BIFS(X)8) = lim (8 ® ¢i| (¥ FE)(X)8® o)

fim tx [F7 (X)7.(P[3 ® ¢1])]

I

Limit across set of coherence states {¢®;} (high amplitude)

FS can be “measured” in homodyne detection experiments

" ]
o
@ RF a local oscillator in a high-amplitude coherent state
e (|3),¢i) mutually coherent pair

o

Relational coherence takes on the appearance of “absolute” coherence
of a laser in the state |3) in the large amplitude limit of the (¢;)
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Relative Quantum Time

Time?

@ How to reconcile time translation invariance with time evolution of
subsystems?

@ How to understand classical/external “t" in Schrodinger equation?

@ Proposed resolution: Page and Wootters 1983

|dea: subsystem as “clock”, condition on values

Other system conditionally evolves according to Schrodinger equation

@ Criticised on various grounds
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Relative Quantum Time

Absolute and Relative Time Observables |

e Pauli: no self-adjoint (absolute) time observable in general

@ Can be modelled as a POVM E: B(R) - L(H)
e MEX)eM = E(X + 1)

@ Consider clock C and reference R

e Hamiltonians He, Hg, Ve(t), Vr(t)

@ Relative Time Observable Z on He ® Hyp defined by:

o (Ve(t)® Vr(t)) Z(A) (Ve(t) ® Vr(t)) =Z(A) for all A € B(RR)
(Invariance)

o Ve(t)'T,(Z(A))Ve(t)=T,(Z(A-1t)) forall A e B(R) and
peS(Hr) (Covariance)
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Relative Quantum Time

Absolute and Relative Time Observables I

Existence established through relativisation:

(¥oEc)(X) = Ach(X+t)®ER‘(dt).

Makes sense also in discrete setting...
@ Replace R by Z4
o Discrete and sharp periodic time observables exist in C¢

@ Let Te and Tx be given by ¥ n|n)(n|
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Relative Quantum Time

Discrete model |

Three systems, S, C, R, arbitrary POVM A = {A(k)}x on S
e H=Hs+ Pe+ Pg
@ Pe =3 m|fn){fn], with me Zy and |fy,) = ﬁ y, e2mimn/d|py.
@ Actions (1:‘5(/4) - eiHsk pg-iHsk
(rg( n)(m|) = e’Pek|n)(m|e~Fek = |n - k)(m - k| etc,

@ Relative time observable:

¥(1 ®|n)(n|) = Z L®|n+m)(n+ml®|m)(m|.

m
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Relative Quantum Time

Discrete model ||
@ Also relativise A:

¥AK) 1) =Y o (A(k)) ® 1 ®|m){m].

m

e Conditional probability comes from a joint measurement
@ Measure {¥(1 ®|n)(n|)} and {¥(A(k)® 1)}.

@ [hey commute, so can be done

o

Joint observable unique since {¥(1 ® |n)(n|)} is sharp:

M(k,n) = a® (A(k)) ®|n+m)(n+m|®|m)(m| (6)

e Joint probability in product state [W)(W| = [¢x%) (/%] ® [0)(0| ® [£)(&]:

P(k.n) = (|5 (ACK)[0°) [(=nlé)[>. (7)
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Relative Quantum Time

Discrete model 1|

e Marginal
P(n) = ; P(k,n) = |(-n|¢)|?.

@ Assume these to be non-zero; conditional probability is:

P(k|n) = (-1/_:‘5

(1-;';? (A(k)) |'¢/.’S ) :

@ expectation of the ‘Heisenberg-evolved’ observable A.
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Relative Quantum Time

Observations

e A arbitrary

o |(n|¢)]? non-vanishing for all ne Zy demands |¢) is broadly spread out
In time.

@ Simplest choice is [£) = |f,,) for some m, i.e., an eigenstate of the
reference Hamiltonian.

@ |V) is unentangled. There exists an entangled with same distribution.
e Continuous time model shows similar behaviour

@ Uses good clock localisation, reference delocalisation

Conclusion: dynamics can emerge out of a time-invariant situation!
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