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Abstract: Black hole (more generally, horizon) thermodynamics is a window into quantum gravity. Can horizon thermodynamics---and ultimately
guantum gravity---be quasi-localized? A specia case is the static patch of de Sitter spacetime, known since the work of Gibbons and Hawking to
admit a thermodynamic equilibrium interpretation. It turns out this interpretation requires that a negative temperature is assigned to the state. I'll
discuss this example, and its generalization to al causal diamondsin maximally symmetric spacetimes. This story includes a Smarr formula and first
law of causal diamonds, analogous to those of black hole mechanics. I&E™II connect this first law to the statement that generalized entropy in a
small diamond is maximized in the vacuum at fixed volume.
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BlaCk hOle en'l'ropy General relativity and quantum

field theory ensure that
Bekensteins generalized entropy

J i Vi N
bgen — ‘4H/4hG + ‘SOUL locally satisfes the second law,

despite the fact that entropy can
be tossed into a black hole.

More precisely, if we include outside field modes up to a cutoff energy A,

Sg'o._lzl — AlTT/4hGA + SO‘-lt‘?<'A'

..which strongly suggests that black hole entropy is, in some UV completed sense,
entanglement entropy of the vacuum, and that area is a measure of entanglement.

Moreover, requiring the Clausius relation dS,, = dQ/T,, for all local acceleration horizons,

or, equivalently, stationarity of S ent? implies the Einstein equation.

The vacuum entanglement entropy area density is 1/(4hbar G);
more entanglement implies smaller G, i.e. increased spacetime "stiffness”.
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WHY IS VACUUM ENTANGLEMENT ENTROPY FINITE?

A~ A

{c

At (. scale, energy uncertainty is AE ~ h/¢,.

Gravity is strong at this scale when ¢. <r, ~ GAFE ~ hG /(.

i.e. when /. < Up

Causal structure fluctuates, blurs N.B. Cutoff on proper separation of pairs
subsystem, cutting off entanglement which is Lorentz invariant.

entropy at the Planck scale.
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AdS/CFT appears to provide a realization of these dreams:

The Ryu-Takayanagi formula (& its time-dependent generalization)
relates CFT entanglement entropy to bulk acceleration horizon entropy,
with a nonzero Newton constant, 1/G = # fields of CFT < co.

..and the bulk Einstein equation can be derived from RT formula
together with CFT entropy properties.
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s the AdS boundary essential?
How locally can notions of black hole thermodynamics be applied?
Thermodynamics of dS static patch?

A small causal diamond in any spacetime is a small deformation of a
maximally symmetric causal diamond, and the Einstein equation is
equivalent to the first law for such diamonds. Is this because

entanglement entropy is maximized in vacuum?

Can this shed light on the cosmological constant problem?
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K

dM = dA 4+ Qg dJ + P dQ

8'7T T
1972, Bekenstein: Varied parameters in the Kerr-Newman solution.
1972, Bardeen, Carter & Hawking: Varied the Smarr Formula

M =20yJ + rA + matter terms

e
which they obtained from a Killing vector identity and the Einstein equation.
Showed that k is an intensive variable, the surface gravity, which (like Q and @) is
constant on the horizon. (Carter wanted to call it the “decay constant”.)

1992, Sudarsky & Wald; 1993, Wald; 1994, Iyer & Wald.:

Derived the first law for any diffeomorphism invariant theory, with the role of
entropy played by the horizon Noether charge for the horizon Killing vector;
valid for all perturbations (not just stationary ones).
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The first law in Kerr-de Sitter spacetime
Gibbons & Hawking, 1977

The first law of event horizons.
fGTd,,K"dZ:" =k DA 87) ' -k 0A ,(8T) 7 ~-Q ,0J ),

GH obtained this by deriving a Smarr formula, then varying.
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The first law in de Sitter spacetime
Gibbons & Hawking, 1977

r= (D'g‘

fGTd,,K"dE"=—KCGAC(8n)'1

Pirsa: 19050036 Page 8/39



Pirsa: 19050036

The first law in de Sitter spacetime

Gibbons & Hawking, 1977

fGTde“dE”=—KCGAC(8n)'1

Negative temperature!
(suggested by

Klemm & Vanzo, 2004);
picked up by nobody...

r= (D'g‘

&)
\,_ -.

" A

.“,Q

(_u- \\f-
% x

<

r= C.O,g-

\

Negative temperature requires an
upper bound to the energy

...and there are independent reasons to
think the dS Hilbert space is finite
dimensional: finite entropy (Banks &
Fischler,...)

Page 9/39



Pirsa: 19050036

But isn’t the Gibbons-Hawking temperature of dS positive??

Yes, indeed. The dS vacuum of a quantum field is thermal wrt the Hamiltonian
generating time translation on the static patch. This was found in the original

Gibbons-Hawking paper, and it is a dS analog of the Unruh effect in the
Rindler wedge of Minkowski spacetime.

Tau = ke /2, Kke=H =+/A/3

So doesn’t this contradict the first law of dS?

No! The matter entropy adds to the dS horizon entropy, so that the
generalized entropy is stationary:

fﬁTa,,K"dE”:—KCﬁAC(Bn)‘l

TendSy = —TendSpy = dSgen =0 !
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Suggests that entropy of the dS vacuum is maximal.
Supporting arguments:
1. Schwarzschild-dS A+ A, is maximized for A, =0

a. atfixed A
b. at fixed volume
c. atfixed “energy”, i.e. fixed Noether charge and k_= 1.

2. Matter has less entropy than a black hole for the same mass,
so adding matter doesn’t increase entropy.

3. GSLimplies that maximal entropy in the cosmological horizon of
asymptotically dS is the entropy of the static patch (Bousso’s “D-bound”)

Related to the maximal vacuum entanglement hypothesis, that the
generalized entropy of small geodesic balls is maximal at fixed volume
in Minkowski spacetime, wrt variations of the state away from the
Minkowski vacuum (TJ, 2015).
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Smarr formula from Noetherology
0L = Edp+ dO(¢p, 0¢),

where L is the Lagrangian d-form, F is the equation of motion d-form, and tensor
indices are suppressed. From the symplectic potential form # one constructs the
Noether current (d — 1)-form associated with any vector field y:

l\( = 6(o, ﬁx.(ﬁ)) —x- L.
When L is diffecomorphism covariant, and the equation of motion £ = 0 holds,
Jx = dQy,

where the (d—2)-form (), is constructed from the dynamical fields together with
y and its first derivative, and is called the Noether charge form. The integral
vields a generalized Smarr formula,

V( Q.\ . / Ix-
JOR JR

If x is a Killing ficld, and if L = 0 on shell, then j, = 0, and this leads to the
original Smarr formula when applied to a hypersurface bounded by the black
hole horizon on one side and the sphere at spatial infinity on the other.
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Smarr formula for Schwarzschild-de Sitter

In Schwarzschild-dS we have a Killing field, but L # 0 on shell because
R x A # 0. Taking the hypersurface ¥ between the black hole and cosmological
horizons, the extra term is

‘ A . i '

; [

This was present in Gibbons and Hawking and described as “the (negative)
contribution of the A term to the mass within the cosmological horizon.” That is,
it contributes as does a matter stress tensor to the “gravitating mass”. Another
interpretation is that it is proportional to the pressure py = —A/87( times
the thermodynamic volume V., a quantity that was named by Kastor, Ray, and
Traschen in the AdS setting.
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First Law from Noetherology

Varying the Noether current away from a background satisfying the equation
of motion, and assuming the linearized initial value constraints hold for the
variation (i.e. varying to any other point in phase space), one finds (Wald,
1993)

(SHX = ?‘ [0(2\ — x - 0(o, (5(,-"_))} : (1)

[f v is a true Killing vector of the background metric and matter fields, then
0H, = 0, so the variational identity reduces to a relation between the boundary
integrals. This is how the first law of black hole mechanics arises. In a dS static
patch there is only one boundary, where y = 0, so the variation of that one
Noether charge must vanish. Adding classical matter and/or a variable cos-
mological constant, one picks up volume contributions, because the description
involves potentials that are not invariant under the Killing flow.
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Maximally symmetric causal diamonds

(TJ, 2015; TJ & Manus Visser, 2018)

! Except in certain limits, they admit
only a conformal Killing vector. The

s = const.
metric can be presented as a conformal
T = const.
= R factor times (hyperbolic space) x (time):
YP P
.’-‘ l"*
D] ~°) / 9 ) D ]
ds® = C*(s,x)[—ds* + da* + p*(x)dQ5_,]
_ cosh s + cosh(x) cosh(R, /L) _
( - T - =, p = sinh
Lsinh(R,/L)
C _ a is a conformal Killing vector, with unit surface gravity,
S and is an “instantanous” true Killing vector at s = 0.

Remarkably, the slices of constant s form a CMC foliation:

B 1 —d
Lsinh(R,/L)

<o Sinh s

sinhs = (d —1)a

I
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First law for maximally symmetric causal diamonds
(TJ, 2015; TJ & Manus Visser, 2018)

A Smarr formula and a First Law can be derived using the diff. Noether current a la
Wald. First Law has an additional term, since ckv not a kv:

o ‘ ‘
SHIM = (h‘-(().ﬁl —kSV) — Ve M\_)

Vis the ball’s volume, k is the outward extrinsic curvature of its edge. In dS, k = 0.

he volume term is —(S_Hf"rm!; it has this geometric form thanks to a minor
miracle: d(div ¢) has constant norm ~ kk on 2 (i.e. at s =0).

lhat it is proportional to the volume variation is presumably related to the
York time (-K) Hamiltonian being the volume.

The last term is the thermodynamic volume V: / ¢ - € times the pressure variation.
JE
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Comments on the First Law

lhe diamond has negative temperature, like the dS static patch.

he volume of the ball can be defined in a gauge invariant way as the volume of
the maximal slice with fixed boundary. This might be important when extending
this relation to a second order variation.

lhe variation of area at fixed volume has a deficit, while the variation of volume
at fixed area has an excess.

A “small” diamond in an arbitrary spacetime can be viewed as a variation of a
maximally symmetric space, and this variation must satisfy the first law if the
spacetime is a solution to Einstein’s eqn. Conversely, these first laws imply the
Einstein equation.
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Comments on the First Law, contd.

For conformal matter, Hamiltonian variation can be traded for an entanglement
entropy variation, which combines with the area to make the generalized entropy

variation.

lhe trade works also for non-conformal matter in small diamonds, if a particular

variation of the (local) cosmological constant is included.
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()‘<H>1£15-ttt()r — TH(S‘:vnmtter L 12 (SX

lhis relation was checked by Speranza, and by Casini, Galante & Myers. In the last

term X depends on the size of the ball. Using this,

o 1 . . , .
TOS,en = v |—KkOV 4+ V(0N — 81GOX))
' Ol
O\

If A =0, S, isstationary: “entanglement equilibrium”

gen
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Second order variation

S2H. — ¢ 82 " 52A - W u
¢ oy QQ 87TG & ~\1 -
K
U= UPSGap + T8 Gan)? > O

[ Jacobson. Senovilla, Speranza; 2017]

In thermodynamic language:
0’E -~ T§*S <0
It seems free energy is maximized!

True for negative temperature systems v
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Quantum Corrections

» I = O for variations that keep ( tangent to the lightcone.
Degeneracy?

» Conformal matter: H"= modular Hamiltonian. 6(H") = g“z0Sn

» Quantum corrected first law OHI™™ = T3 Syen

(Also valid for non-conformal matter [Jacobson, Visser; 2018])

Generalized entropy Sgen = 76A + Sm
» "Energy" term gets contributions from geometry and A.

» Clearer connection to entanglement equilibrium setup: fixed
volume and cosmological constant = Einstein equations.
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Concavity of conformal free energy

Mo

2 77g+A (2 2rym _ R 2 2
0“HY —OHC—OH”——SWG()A—ID—()(HC‘)

For conformal matter:

%ﬁsmwv D >0

52 (Hén> = 5

e.g. [Kelly, Kuns, Marolf; 2015]

= 6°HI"™" = T6®Syen — (¥ + @)
0

F=H"" - TSgn ’F <0

Clue to thermodynamic stability!
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Remainder Questions

1
» Non-conformal matter.

» "Cross-terms" in second variation of total entropy; higher order?

e change in matter entropy due to variations of geometry.
e change in geometry entropy due to variations of quantum states.

» Correct thermodynamic ensemble for diamond: path integral.

Thank you.
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