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Abstract: We derive an effective Hamiltonian constraint for the Schwarzschild geometry starting from the full loop quantum gravity Hamiltonian
constraint and computing its expectation value on coherent states sharply peaked around a spherically symmetric geometry. We use this effective
Hamiltonian to study the interior region of a Schwarzschild black hole, where a homogeneous foliation is available. Descending from the full theory,
our effective Hamiltonian preserves all relevant information about the graph structure of quantum space and encapsulates all dominant quantum
gravity corrections to spatially homogeneous geometries at the effective level. It carries significant differences from the effective Hamiltonian
postulated in the context of minisuperspace loop quantization models in the previous literature. We show how, for several geometrically and
physically well motivated choices of coherent states, the classical black hole singularity is replaced by a homogeneous expanding Universe. The
resultant geometries have no significant deviations from the classical Schwarzschild geometry in the pre-bounce sub-Planckian curvature regime,
evidencing the fact that large quantum effects are avoided in these models. In all cases, we find no evidence of a white hole horizon formation.
However, various aspects of the post-bounce effective geometry depend on the choice of quantum states. Finally, we show how a de Sitter Universe
extending the classical spacetime past the singularity can be recovered by means of the smplicity constraint.
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Quantum gravity predictions for
black hole interior geometry

Daniele Pranzetti

Based on work in collaboration with Emanuele Alesci and Sina Bahrami
® Phys. Rev. D98, no. 4, 044052 (2018), [gr-qc/1802.06251];

@ Phys. Rev. D98, 046014 (2018), [gr-qc/1807.07602];

® [gr-qc/1904.12412].
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Black hole evaporation and information loss

The standard semiclassical global causal structure In the complementarity scenario, late particles b
representing black hole formation and the are expected to carry non trivial correlations
subsequent evaporation. The hyper surface 32 with early particles ¢ as to purify the final
representing an ‘instant’ of time after the state of the Hawking radiation. This view is in
complete evaporation of the initial black hole, fails contradiction with the equivalence principle and
to be a Cauchy surface of the whole space-time. the validity of QFT in the mean field scenario.
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Global causal structure in the remnant paradigm. The darken region represents the region
where quantum gravity effects are expected to be large. The black hole evaporates following
the semiclassical (mean field) expectation until it becomes Planckian in size. Most of the
initial mass is radiated as Hawking radiation and one ends up with a Planckian mass remnant
moving along a time-like world-tube of Planck size in (essentially) flat Minkowski space-time
with a very long lifetime. Here we assume the remnant is stable so it goes up to it.
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[Bianchi, Christodoulou, D'Ambrosio, Haggard, Rovelli, CQG 2018]

Global causal structure in the remnant paradigm. The darken region represents the region
where quantum gravity effects are expected to be large. The black hole evaporates following
the semiclassical (mean field) expectation until it becomes Planckian in size. Most of the
initial mass is radiated as Hawking radiation and one ends up with a Planckian mass remnant
moving along a time-like world-tube of Planck size in (essentially) flat Minkowski space-time
with a very long lifetime. Here we assume the remnant is stable so it goes up to it.
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Through a black hole into a new universe?
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[Frolov, Markov, Mukhanov, PLB 1988]: Under the assumption that some limiting curvature exists,
the Schwarzschild metric inside a black hole can be attached to a closed de Sitter one at some
space-like junction surface which may represent a short transition layer.
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In general, conservative solutions to restore unitary evolution rely on
elimination of singularities [Hossenfelder, Smolin, PRD 2010].

At the end of the day, only a full quantum gravity calculation can

discriminate between different scenarios.

Loop Quantum Gravity (LQG) provides a non-perturbative framework
to investigate BH singularity resolution.

However, the analysis is strongly affected by an important choice:
Reduction or Quantization first?

The two in general do NOT commute!
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General Relativity in
Ashtekar variables

Al (x), E*(x)

Mini-superspace

AL (1), B (1)

Polymer BH
[Ashtekar, Boehmer, Bojowald, Brahma, _
Campiglia, Corichi, Gambini, Kastrup, Modesto,

Olmedo, Pullin, Singh, Swiderski, Vandersloot] . .
Use of point holonomies:

Graph DOF is lost
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Quantum Reduced Loop Gravity program

e Symmetry reduced models have “smart” frames: systems of coordinates adapted to the symmetries

e In these coordinate systems the imposition of the symmetries allows to further simplify the form
of the metric and Einstein Equations

Symmetry reduction in two steps:

1) Partial Gauge fixing of the metric (without symmetry reduction)
Study the second class constraint system: Reduced Phase Space

A. Solve the second class constraints
B. Dirac Brackets
C. Gauge Unfixing [Mitra, Rajaraman, Anishetty, Vytheeswaran]:
e Ordinary Poisson Brackets for the non gauge fixed variables
¢ Modified Constraints to preserve the gauge fixing during the evolution

2) Implement the symmetry reduction in the reduced phase space
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Quantization

A. Quantize the classically Reduced Phase Space (with or without symmetry)
B. Quantize Dirac Brackets
C. QRLG: 4 steps

1. Impose the second class constraints weakly in the Full Hilbert Space:
Selects the reduced states i.e. the quantum reduced phase space

2. Project the constraints defined in the full theory to represent the classical gauge
unfixed constraints (preserving the gauge fixing)

3. Impose the symmetry reduction on the reduced states using coherent states
4. Define the effective constraints by taking the expectation value of the quantum reduced

constraints on the symmetry reduced states

Find quantum symmetry reduction compatible with given metrics

ad e Black Holes: Orthogonal gauge fixing
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Quantum Reduced Loop Gravity: Black holes

The intrinsic metric on the spacelike hypersurfaces is:
do? = A*dr? + ]?2((!9"3 +sin” 0 {"ZL,'S'B)
A(t,r), R(t,r) ADM phase space configuration variables

- = FE"(tr)sinlm0, + lft‘l (t,r)m + E=(L, :'_)T-glﬁin(ﬁh'),; + Ilfl (L)1 = E*(t, 1)1 ] Ay
A=A (t,r)radr+ [A (8, )7+ Ao (t, ) m2]dO + sin O [ Ay (8, 1) 12 — Ao (b, )71 ] dip + cos Ordy

with Poisson brackets

{A(t,r), E"(t,r")} =2Gy8(r -1"),
{.--1, (t,r), B (t, 'r"_)} =Gyo(r-r"),
{Aa(t,r), E*(t,r")} = Gy (r—1")

Ef=0, I=1,2,

Orthogonal partial gauge fixing conditions:
g p g g g L1.5\ - {] : ‘1 — H? fl‘-'{)
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"t PHE =" H™ = orH
/ [' = cubulation

Carries a representation of the
quantum holonomy-flux algebra:

Ei(SY) = /n"*,-';'u,-,rfmffng

G = Pele. iAW (9)ds

(v 8+ ep,2) (v v g re,)

r”f;; iy (90) = (”"‘J'v Uy l”j‘ (90) it 1)
Assign to each link in a given tangent 0, () ) — (o, | D7 (g ) Where
direction the following basis elements e o o

D (g0) = (e g D7 (g0)jens)

|y, iir) = SU(2) coherent state having maximum or minimum magnetic number along 1i;
v
2 orthogonal unit vectors in the arbitrary internal directions [ ¢ {x,y}

S = Orthogonal faces of the cube dual to a 6-valent node of the reduced graph (regularization of the reduced fluxes)

(B (S")y=0, I=1,2,

on H % the gauge fixing conditions are weakly satisfied: 5 o2
(E3(SM)=0, A=0,¢

Pirsa: 19050030 Page 12/25



Reduced 3-valent vertex state:

Reduced flux operators:

n ]wi(“’,,) _ !‘)_-:. I‘;‘,(ﬁ” ) f)t ) 1‘,: - E |}__ - ) ('H} . ,__ ‘ _
R8T = PTE(SY) P where LT
o _ o P = E [tig, g Yy, tig]
RE(STY = PYE(SY)PY .~

+ This procedure allows one to work with the complete structure of the full theory, consisting
of quantum states of polymeric nature labelled by graphs and SU(2) representations

+ At the same time, the reduced flux operators are diagonal on the reduced quantum states!

Pirsa: 19050030 Page 13/25



Pirsa: 19050030

e Step 2:

- I : N .
H,.[;\-']f—ff-z‘*.;:% Lt |
Extended Hamiltonian constraint K Vdet(E)

(preserving the gauge fixing) ey .
H,[N]= _2(] 1) / ff".;:i
b {i[‘l.( I'j)

Iy
Let us focus on the reduced Euclidean Hamiltonian

n o ,w’l I 5 4/ r'.-'\ B oAl 4] Al fn'l A3 Al
Hy = By EP 0, 4% + EfES AL AL + ESEP A3 A

Using Thiemann's

techniques 7 o 7
- CHEINT = = N @) e [("ga, = "dal) "33 "0 "V (0)]]
Ry I )
iy Jiy
— e
—IE‘I S J2 |L
By means of the itz o its action can be computed
“reduced"” recoupling rule: L m|i in a straightforward way

iy g
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® Step 3: Coherent semiclassical states

e [Hall, Thiemann, Winkler, Sahlmann, Bahr]
A/ 5y ——\, 1 -1 -
i (9e) = ) (250 + L)e R AT E)
Je

A = positive real number controlling the fluctuations of the state

Xj, = SU(2) character in the irreducible representation Je

P

G = gexp (, : 1:__‘,:(‘5"").#) SL(2,C) group element encoding the classical
/, Ky '\ geometry around which we want to peak

Codes the extrinsic Codes the
curvature intrinsic geometry

for ,j;;_:ﬁ.;!'m_-j'z > 1 the coherent states become Gaussian weights for the fluxes
peaked around the semiclassical values j, = 47 with

1 , ,
. () ~ A s~
jo = () cos v + 125 sin @), R
Ky ’ N/
‘lf 05 = €€,
..“ o {,.-.-‘. . _‘ _‘ar\fj . , _.. “2 )
Jy = ’“- (£ sina + S CoSv) , f\__u =¢,€¢p,
1 !
<)
Rl & _ . .
jo = o 0% = €p€yp
o .'l'\.] )
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If we open up the character, we can write the quantum reduced coherent states in the compact notation:

o0
1A . O .
l;'}(»;(.(h-') = Z Z (-2 + )({F (’_ ‘I)._’j;' - (_f_]p 1 )
Je=0mge ne==x73s /

‘Gaussian’ wave-function

By contracting with reduced intertwiners and introducing proper normalizations,
we obtain the normalized quantum reduced coherent state

= 11 Z )Y

C=wy,z Je. g, 0y =0 me,ne=%3¢ mj nY=+j, m
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VAT(r) + A ()

2

_Bh‘f! ( f\"‘ [m] |“ [,\llfl.I + ; ly"'l ! + " ].\llﬂ. |;J?‘?I;) - I"rw " ' ( o
(.‘i‘\]i

X

i [\-“; l.|I (r)
S a

[~.m

x

sinfle ‘hi]l

A2 (r+ e, )+ A3 (r +¢,)
VAT 24! ~ sin fe |

Vo)A (ree,) \
= - . .',|.l|(r b )+ cos

Volr)e A (rae )
L0 4y v,)

\,-';'l‘l(} ey ) 4 l‘{r + £ )

F AZ(r) JAZGr e )+ A2+,
- .H-Hlir'lir]i'lll‘-[\. - - 24 hilll".‘r.]

9

L -,.‘J 1,(,}“ l,-l__.[a }])
I

VAT(r) + AS(r)

SAZGY + AT VAL e )+ AL +6,)
e, h]J:U(t'-!H[\ _ .., —ep|sin] = - .., 21 ~ €

[h‘]]: b (r) 1'”I“'f,|.||[f be, ) :‘nhl 1 (r) }“" r"c,‘ Lo+ r,}]

2
x

Vo (rve,)-A ()
. ¢

+ ,|,-l|[f]ltnrh

\‘f",l‘(_f + €, ) + l;(l ~|,_\j
N Sfep 4. ) [\ () + AZ(r) ] [\;’_\"(, Feg )+ AS(r +e,) ]
=111 €| Cos €4

) 9

[\]J:[ l"".r'_ll l't'f‘r,|,||[.*] + COS

l.("-.‘f] l.{'.’{f|l__:“}])
VA(r) + AZ(r) _

b JAT(r) + As(r)
+2¢, - sin[\/,”(;-) ' 1:{4')”"Iﬁm| \ AT (1) (sin @ + sin (0 + r,-,}:]r' I

/ 9

ooatete EY(rY , -
2 s (sin (@ + 2ep) — 2sin (0 + ep) + sinfl)
RV, ()
) ) sin
(1 \-."){“" . I
G 2R (E (r))?

»-l."-."[r')[ (E"(r+e.) = E () + AR (0 J(E (426, ) =28 (v + e, )+ K ()

LET ) (R (ke )~ B0 (B e v e) = BN ()
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Solving the effective dynamics

We are interested in the effective description for the interior geometry of a spherically symmetric black
hole, namely we restrict our search for quantum geometries to metrics in the minisuperspace of the form

2

ds® = =N(7)%d7? + A(7)%da® + R(7)*d? Homogeneous Cauchy slices with topology [ x §*

hi‘,!
x € [0, Ly] infrared cut-off Bk 2G2mPy

>
>

(f> ’) 7 =0- BH horizon
\Z & 7 = -o0 = classical singularity

oo <7 <)

'y

ADM phase space:

7 (r‘ ) A ! "-\ Y <
A, = -—(P A = P
R (r R ) : R \

~  {R.Ppy={A. Py} =1/L,
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v Effective Hamiltonian:

Hop = Ly : [‘ R sin ("; G| PT;;) PaA| ”Bm“ (-} (’.‘]f{[{\ ) | W”“(Aj:(‘,‘;{l-’__.\ )}

492Ge pe?
) LN GePs NGl
+e, A H‘}"'(T()H(()Hlll(f) +7r.~+11|(f7'\)”n( ( \)
’ 2 R R )

¢ Struve function of order O:

2% (-1)k 2Rkt main departure from the minisuperspace quantization models: encodes the
Holz] = }__, T a2 (j) DOF associated with the 2-sphere graph structure which are frozen in all
o (1 [A' * 7]) ' the previous treatments relying on the use of point holonomies.
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v Effective Hamiltonian:

_ Lo o yGen [ PrR = PAN|N [, . (7GeP YGelPy
He.g = ;[_72(_;(r(_&)[tllhlll( 72 )Jhlll( n )I?T”n( I )

+ (:;_;'\{37-3 cos (¢€) sin (%)] + 7 sin (W)””(?(’:,R\ )H
< i 3 7

¢ Struve function of order O:

2% (-1)k 2Rkt main departure from the minisuperspace quantization models: encodes the
Holz] = }__, T a2 (j) DOF associated with the 2-sphere graph structure which are frozen in all
o (1 [A' * 7]) ' the previous treatments relying on the use of point holonomies.
= No White Hole horizon in the effective interior geometry
like, e.g., [Ashtekar, Olmedo, Singh, PRL 2018]
¢ Quantum parameters: 2 L i
P €9 =€, 1= =2 , N/,N,>1

= a7 € r ’
Af\'" ' ,‘"\"_.,.

‘Uﬂ . -IFTI(\") ~ 4 W‘?"f'li,jnf\" 2

V(E) = AnLoAR? = 2(87762)*2j\/jo N, N*

(8] —
.. €= —, v i= 2T Y10 f'i, 3
- R
(v, 0+ ey, 0 (r 0+ ey, p0+e) - p = £
(r 0+ o) (r,f " 3 o /87 i (,
€. ==, f3:= —

A ' vV Jo
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4 Including the simplicity constraint:
BH horizon

Homogenous foliation Homogenous foliation

inside outside
0 k
_ Expectation value of generator of - _ Expectation value of generator
rotations in the planes (=.0),(r,¢) ’ of boosts in the planes (4,8),(t,¢)

_ Expectation value of generator jo = Expectation value of generator
= Jo =

Jo of rotations in the plane (7 ,¢) of rotations in the plane (¢, )

Internal gauge group SU/(2) Internal gauge group S{/(1,1)

(Ky=+(L;) = J7=7Jo

Interplay between canonical and covariant formulations already
exploited to understand thermality properties [DP, PRD 2014]

Page 21/25



Pirsa: 19050030

O Effective Hamilton evolution eq.s:

: | i)l![.{f'[i'\fj I3 } PH /"..\
I —— Cos ‘;;_;‘f(— ) :

T Lo 0Pg 2m RA R
| (')”(“'[JJ\"’] A [ ( Pr Py )]
; = cos '””'f 5
Lo 0Py 2 RA  R?
rH [ 2552 ] (2sin? [ 1552 ] - 8% cos [ %] sin? [ £ ]) + cos [ X5k | (72 HE [21952 ] = 1692 cos [ & ] sin? [ ])
+ Al 1 = 1 1 sl ld
(2sin [ 155 ]+ wHy [ 1552 ])°
o . . _ R A C )
We look for solutions in the asymptotic region 7~ -co st  — = Ao C' = const <0
1 { KA
We make the ansatz mo_obn __2moy  Pa_ mo. & _d. ]
[

RN "R2 A8 R? v

(2!! [7mo,]sin [?m”]"’+ THy[ra, ]? cos [?T(T])

(Q:Ain[m.r.]+7an[TmH])E @
sin [mo, |Hy[mo ]

Trr-lill 7o, ] (2sin (7o, | + 7Hy| 7o, ])

| 3

cos [, = f)

[§

-y

a,,

(T 4

C'=-0.9714474

¥ Iy
=1.1421
-)

&)
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Kretschmann scalar ) o0
. A Gm 30,
K.~ I/(‘P . for 7T.= log,

e G regime: :
WG, regime 3 (AGYm?t)

3,
O ¢ G

K:-(- - h)( » Il)ufu‘rf - _—
hed 1(Gm)?

Numerical Solution:
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No large quantum effects

All curvature invariants have a mass-independent bound
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We predict an asymptotic Poincaré patch of de Sitter space-time inside for

=~ 0.2743 Hold on a second...

Same numerical value as from the SU(2) black hole entropy calculation!

[Agullo, Barbero, Borja, Diaz-Polo, Villasenor, PRD 2009]; [Engle, Noui, Perez, DP, PRD 2010]

y g 0y 20
-~ 2 f]l\/(; 2 L2487 F}J Bl S 2 2 2 .
&= dsygym = ——5—dT° + ] — e G (dax® + (S ). 06,0 =const~o(l)
o Gm Gm '
. SN G
T —-00, h;u-‘ = A e with i\ = - —
4/5F Gm L,
TH o S space-like ¢ l

de Sitter

null

.......................
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Discussion & Outlook

™ By performing the symmetry reduction at the quantum level all relevant DOF are
encoded in the effective dynamics

-> Crucial modifications w.r.t. minisuperspace quantization models (no white holes)
@ Geometric considerations + simplicity constraint
-> Asymptotically de Sitter effective metric for the same Immirzi parameter value as in

SU(2) BH entropy calculation

& Emerging cosmological constant due to quantum gravity effects

0 Inclusion of matter: Does the gravitational collapse encode the history of the Universe??

[J Horizon penetrating foliation: exterior and interior dynamics together for the first time.
- Algebra of effective constraints [WIP with Camilletti, Dekhil]

- Development of numerical techniques to solve non-local ODE's [WIP with Luzi]
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