Title: Good Approximate Quantum LDPC Codes from Spacetime Circuit Hamiltonians
Speakers: Thom Bohdanowicz

Series. Perimeter Institute Quantum Discussions

Date: May 15, 2019 - 4:00 PM

URL.: http://pirsa.org/19050024

Abstract: We study approximate quantum low-density parity-check (QLDPC) codes, which are approximate quantum error-correcting codes
specified as the ground space of a frustration-free local Hamiltonian, whose terms do not necessarily commute. Such codes generalize stabilizer
QLDPC codes, which are exact quantum error-correcting codes with sparse, low-weight stabilizer generators (i.e. each stabilizer generator acts on a
few qubits, and each qubit participates in a few stabilizer generators). Our investigation is motivated by an important question in Hamiltonian
complexity and quantum coding theory: do stabilizer QLDPC codes with constant rate, linear distance, and constant-weight stabilizers exist? We
show that obtaining such optimal scaling of parameters (modulo polylogarithmic corrections) is possible if we go beyond stabilizer codes: we prove
the existence of a family of [[N,k,d,iu]] approximate QLDPC codes that encode k = T©(N/polylog N) into N physical qubits with distance d =
T©(N/polylog N) and approximation infidelity Tu = 1/polylog N. We prove the existence of an efficient encoding map, and we show that arbitrary
Pauli errors can be locally detected by circuits of polylogarithmic depth. Finaly, we show that the spectral gap of the code Hamiltonian is
T©(N”(-3.09)) (up to polylog(N) factors) by analyzing a spacetime circuit-to-Hamiltonian construction for a bitonic sorting network architecture that
is spatially local in polylog(N) spatial dimensions.&nbsp;(Joint work with Elizabeth Crosson, Chinmay Nirkhe, and Henry Yuen,
arXiv:1811.00277)
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Results

» Technique that turns any QECC into an AQECC that is the
groundspace of a non-commuting frustration free Hamiltonian

« This can use good QECCs with polylog depth encoding circuits to
obtain a local code Hamiltonian with polylog interaction degree, with
ground space that is an AQECC with parameters that are good up to

Hawi lfon e polylog corrections.

s ; - codes are approximate, approximately LDPC and approximately
— = 07 agoodn

» New gap analysis technique for spacetime circuit Hamiltonian
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Very Approximate

Our codes are approximately...

1. Codes: Recovered state is within £=1/polylog trace distance to
originally encoded state

2. LDPC: each qubit participates in a polylog number of non-
Hamilfon ia commuting (but frustration free!) local checks

3. Good: Linear distance and constant rate up to multiplicative polylog
corrections

| ¢
7]

4. Detectors: Using a measurement of polylog complexity on polylog
qubits, error is detected with probability 1-1/2P°!V'c8
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Motivations

* Quantum LDPC Conjecture: do there exist CSS stabilizer codes with
constant rate, linear distance, and local, sparse stabilizer generators?
We try and make progress by going beyond the paradigm of exact
codes that are stabilizer

* We don’t yet know for sure what we can say about possible code
parameters, entanglement properties, and connections to condensed
matter and holography for codes with commuting checks

* Very little is known about the realm of possibilities with codes whose
checks do not commute
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The state of QLDPC...

Reference # of logical qubits Distance Locality Notes
Tillich, Zémor ‘14 Q(N) Q(VN) O(1) CSS stabilizer code
Freedman, Meyer,

Luo, ‘02 O(1) Q(y/Nlog N) O(1) CSS stabilizer code
) - CSS Stabilizer code
Hastings ‘17 (1) Q(N'%) o) (conjectured)
Bacon, Flammia, . _ - Subsystem code,
Harrow, Shi ‘14 QN) QN ) O(1) Frustrated H
) . Approx. code,
(this work) Q(N) Q(N) O(1) frustration-free

noncommuting H
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Our codes do not...

* Have explicit example constructions
* Have any known efficient recovery process

* Appear to be useful for quantum fault-tolerance in any practical
sense
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Approximate QLDPC Code

Like a standard QLDPC code except:
1. Codewords are recovered with fidelity 1-€

2. Codespace is ground space of frustration free local Hamiltonian
whose terms need not commute

3. Qubit interaction degree should be at worst polylogarithmic rather
than constant
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Starting Point

* Nirkhe, Vazirani + Yuen (2018) showed that you can create an AQECC
by taking any QECC and feeding its encoding circuit into the
Feynman-Kitaev circuit-to-Hamiltonian construction (Kitaev 1999)

* The constructed Hamiltonian H
states of the form T

) = 3" Junary(t)) ® Uy...Us |€) 07 )

«ircuit NAs @ ground space spanned by

VI +1

* £ is the k-qubit state that we are encoding into an n-qubit codeword
via the encoding circuit C = U;...U,
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[e) = )) ® Us...Up|€)|0™F)

\/ﬁ Z lunary(t

This is a codeword of the approxrmate code, and is made up of n+T

qubits (where n is number of qubits of the underlying code, T is size of

encoding circuit)

* Even superposition over all stages of “partial encoding” of ¢

* Only the final term of the superposition is the actual codeword,
meaning high error!

* |dea: pad the encoding circuit with identity gates, then most of the

weight will be on the actual desired codeword!
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Limitations...

* The NVY construction has constant weight checks (terms of the
Hamiltonian H,.,,) even if the underlying code does not, which is
nice! But each qubit still participates in a large number of checks.

* The number of checks acting on each qubit scales with the depth of
the encoding circuit for the underlying code

* Also, we don’t have spatial locality
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But...

* Now all qubits interact with all other qubits and the construction has
absolutely no spatial locality

* To be clear: spatial locality was an issue before, but this is even worse
now that all qubits talk to each other

* We need a few more modifications. ..
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Spacetime Circuit to Hamiltonian Construction

* Breuckmann and Terhal came up with a helpful generalization of the
Feynman-Kitaev construction

* Instead of enforcing a total order in which the gates of the circuit
need to be applied, we can use the partial order enforced by causality

* This allows us to use local clocks for each qubit instead of a single
global clock

* [t’s not completely obvious how, but this ends up allowing our checks
to be spatially local in log(n) dimensions
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Spacetime Circuit to Hamiltonian Construction
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global clock
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Spacetime Codewords

* Ground states of spacetime circuit Hamiltonian are

teT

. T is the set of “valid” circuit configurations ¢= (¢1,...,t,) allowed by
causality, corresponding to partially applied circuit UE’
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The story so far

* We take a random BF encoding circuit on n qubits, plug it into the
spacetime circuit-to-Hamiltonian construction

* Obtain an approximate QLDPC code on N=0O(nlog3n) qubits
* Encodes Q(n)=Q(N/log3N) qubits (inherited from BF code)
* Has distance Q(n)=Q(N/log3N) (inherited from BF code)

* We think things are starting to sound good...
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Why?

* We analyze the spectral gap of these Hamiltonians by analyzing the
spectral gap of a Markov chain on the corresponding graph Laplacian

* We would want to use Cheeger’s Inequality to get a lower bound on
the gap

* But with a random 2-qubit gate circuit, the analysis and sheer number
of partial configurations of a circuit make it seem like the best that
we could hope for is an exponentially small gap ®

* This would make the code pretty useless for any purpose (it would be
exponentially difficult to determine if a state is in the codespace or
not)
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One more technical trick!

* Analysis would be simpler if exact structure and qubit connectivity of
the encoding circuit could be known/assumed

* So we uniformize the structure of the random BF encoding circuit
using bitonic sorting networks
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Bitonic Sort

* Bitonic sort (Batcher) is a parallel sorting algorithm that uses a depth
O(log?n) circuit made up of swap gates that can enact any
permutation on a set of data (like qubit positions)
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Bitonic Sorting Architecture

* In this circuit architecture, each qubit interacts with exactly log(n)
other qubits (connectivity is that of a hypercube in log(n) dimensions)

* SO: Use a bitonic sorting circuit between each layer of random gates
of the BF encoding circuit so that the non-trivial gates always act on
the same pairs of qubits
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Uniformized BF Circuit
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* Encoding circuit now has depth O(log>n), but has a structure
amenable to tractable analysis of soundness

* The log(n) connectivity of each qubit also allows us to make the
construction spatially local in log(n) dimensions!
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Schematically...

BF

\ 4

Approx. QLDPC Code
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Soundness Methods

* Let (m, P, Q) be a reversible Markov Chain, with state space subsets Q.

* Define restricted Markov Chains on the subsets, P, by removing
transitions that leave Q,

* Markov chain literature (Madras + Randall) says

1 _
gap(P) > §ga,p(P) ~min gap (Pg,)
n

1=1,..., 7
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Let’s Count Configurations of B,
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* If b, counts configurations of B,, then b, has no more than 2b,?
configurations
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Let’s Count Configurations of B,

* But we overcounted! We overcounted by the number of
configurations that live in the overlap of the two B, decompositions

* In this case, the overlap is just the second layer of B, which is
isomoprhic to four copies of B, !

by = 2b5 — b}

* So,
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Meanwhile...

* Dyadic tiling of the unit square by dyadic rectangles:
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The Isomorphism...
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Let’s just say...

* Using Cheeger’s inequality and similar counting techniques, we can
obtain: 5 1

— > —
P p2m? log*n  polylog(n)

* So for the whole gap:

1
n3-99polylog(n)

Ay >
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Encoding + Decoding

» Spacetime codewords can be generated by a poly(n)-size quantum
circuit

* Decoding uses the recovery map of the underlying BF code: just
throw away the clock qubits and use the recovery map on the data

qubits
* Recovered state has error 1/polylog(N)
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Summary

* Our “codes” show that if we go beyond the stabilizer paradigm, we
can say interesting things about qLDPC!

* New techniques were invented for our analysis: maybe they’ll find
application in other problems?

* Many questions about spacetime codes: could we come up with
concrete examples? Understand logical operators? Efficient
decoding?
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Thank you!
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