Title: A Gleason-type theorem for qubits based on mixtures of projective measurements

Speakers: Victoria Wright

Series: Quantum Foundations

Date: May 14, 2019 - 3:30 PM

URL: http://pirsa.org/19050023

Abstract: We derive Bornâ \in TMs rule and the density-operator formalism for quantum systems with Hilbert spaces of finite dimension. Our extension of Gleasonâ \in TMs theorem only relies upon the consistent assignment of probabilities to the outcomes of projective measurements and their classical mixtures. This assumption is significantly weaker than those required for existing Gleason-type theorems valid in dimension two.

Pirsa: 19050023 Page 1/27

Gleason-type theorems

V.J. Wright & S. Weigert

PI 2019

University of York

Pirsa: 19050023 Page 2/27

This talk

A Gleason-type theorem for qubits from mixtures of projective measurements

Only general probabilistic theories satisfying the no-restriction hypothesis admit a Gleason-type theorem

Pirsa: 19050023 Page 3/27

Gleason's Theorem

Projective measurements

 \Longrightarrow

Density operators and Born rule

$$A,\{\Pi_1,\Pi_2,\ldots\}$$

 $\operatorname{Tr}\left(\Pi_{j}\rho\right)$

Pirsa: 19050023

Applying Gleason's Theorem

- □ Postulates:
 - (H): A quantum system is associated with a separable Hilbert space, \mathcal{H} .
 - (M): **Measurements** can be represented by **collections of projections** $\{\Pi_1, \Pi_2, \ldots\}$ which sum to the identity, where each projection corresponds to an outcome of the measurement.
- □ **States**: specify outcome probabilities

Gleason's Theorem

Theorem (Gleason 1957)

Let \mathcal{H} be a separable Hilbert space with dim $(\mathcal{H}) \geq 3$. A function $f: \mathcal{P}(\mathcal{H}) \rightarrow [0,1]$ satisfying

$$f(\Pi_1) + f(\Pi_2) + \ldots = 1$$

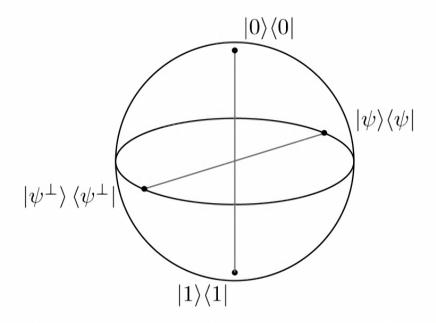
for any collection of self-adjoint projections $\{\Pi_1, \Pi_2 ...\}$ onto mutually orthogonal closed subspaces of \mathcal{H} admits an expression

$$f(\Pi) = \operatorname{Tr}(\Pi \rho)$$

for all $\Pi \in \mathcal{P}(\mathcal{H})$ and some density operator ρ on \mathcal{H} .

Pirsa: 19050023 Page 6/27

Dimension two



Each rank-one projection $|\psi\rangle\,\langle\psi|$ only features in one equation:

$$f(\ket{\psi}\bra{\psi}) + f(\ket{\psi^{\perp}}\bra{\psi^{\perp}}) = 1.$$

Pirsa: 19050023 Page 7/27

Generalised measurements

- □ Postulates:
 - (H): A quantum system is associated with a separable Hilbert space, \mathcal{H} .
 - (M): Measurements can be represented by collections of projections $\{\Pi_1, \Pi_2, \ldots\}$ which sum to the identity, where each projection corresponds to an outcome of the measurement.

- □ **States**: specify outcome probabilities
 - $\square f: \mathcal{P}(\mathcal{H}) \to [0,1]$
 - $f(E_1) + f(E_2) + \ldots = 1$

Generalised measurements

- □ Postulates:
 - (H): A quantum system is associated with a separable Hilbert space, \mathcal{H} .
 - (M): Measurements can be represented by collections of projections $\{\Pi_1, \Pi_2, \ldots\}$ which sum to the identity, where each projection corresponds to an outcome of the measurement.
- (GM): **Measurements** can be represented by **collections of effects** $\{E_1, E_2, \ldots\}$ which sum to the identity, where each effect corresponds to an outcome of the measurement.
- States: specify outcome probabilities

 - $\Box f(E_1) + f(E_2) + \ldots = 1$

Gleason-type Theorem

Theorem (Busch 2003)

Let \mathcal{H} be a separable Hilbert space with dim $(\mathcal{H}) \geq 2$. A function $f: \mathcal{E}(\mathcal{H}) \rightarrow [0,1]$ satisfying

$$f(E_1) + f(E_2) + \ldots = 1$$

for any collection of effects $\{E_1, E_2 ...\}$ on \mathcal{H} satisfying $\sum_j E_j = I$ necessarily admits an expression

$$f(E) = \operatorname{Tr}(E\rho)$$

for all $E \in \mathcal{E}(\mathcal{H})$ and some density operator ρ on \mathcal{H} .

Pirsa: 19050023 Page 10/27

Smaller sets of measurements

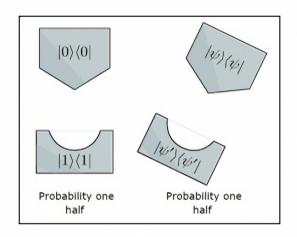
- □ Does there exist a smaller set of measurements with this property?
 - i.e. a set of POMs \mathbf{M} such that, if $f(E_1) + f(E_2) + \ldots = 1$ for all POMs $\{E_1, E_2, \ldots\} \in \mathbf{M}$ then f is necessarily of the form

$$f(E) = \operatorname{Tr}(E\rho)$$
?

□ Yes!

Pirsa: 19050023

Projective simulable measurements¹



Probability of observing zero outcome=

$$\begin{split} &\frac{1}{2}\operatorname{Tr}\left(\left|0\right\rangle\left\langle 0\right|\rho\right)+\frac{1}{2}\operatorname{Tr}\left(\left|\psi\right\rangle\left\langle\psi\right|\rho\right)\\ &=\operatorname{Tr}\left(\left(\frac{1}{2}\left|0\right\rangle\left\langle 0\right|+\frac{1}{2}\left|\psi\right\rangle\left\langle\psi\right|\right)\rho\right) \end{split}$$

The statistics of the box are the same as any other implementation of the POM

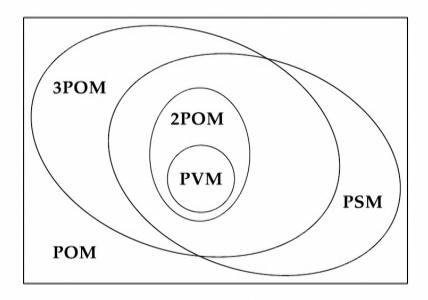
$$\left\{\frac{1}{2}\left|0\right\rangle\left\langle 0\right|+\frac{1}{2}\left|\psi\right\rangle\left\langle \psi\right|,\frac{1}{2}\left|1\right\rangle\left\langle 1\right|+\frac{1}{2}\left|\psi'\right\rangle\left\langle \psi'\right|\right\}$$

Pirsa: 19050023 Page 12/27

¹Oszmaniec et al., "Simulating positive-operator-valued measures with projective measurements".

Measurement sets

Not all POMs projective simulable, but all two-outcome POMs are.



Pirsa: 19050023 Page 13/27

Main result

Theorem (Wright and Weigert 2018)

Let $\mathcal{H} = \mathbb{C}^d$. A function $f : \mathcal{E}(\mathcal{H}) \to [0,1]$ satisfying

$$f(E_1) + f(E_2) + \ldots = 1$$

for any collection of effects $\{E_1, E_2 ...\}$ on \mathcal{H} constituting a projective-simulable POM necessarily admits an expression

$$f(E) = \operatorname{Tr}(E\rho)$$

for all $E \in \mathcal{E}(\mathcal{H})$ and some density operator ρ on \mathcal{H} .

Pirsa: 19050023 Page 14/27

Sketch of proof

1
$$\{E, I-E\}$$
 and $\{E/2, E/2, I-E\}$

$$\Box f(E) + f(I-E) = f(E/2) + f(E/2) + f(I-E) = 1$$

$$\Box$$
 $f(E)/2 = f(E/2)$

$$\{E/2 + E'/2, I - (E + E')/2\}$$
 and $\{E/2, E'/2, I - (E + E')/2\}$

$$\Box$$
 $f(E + E') = f(E) + f(E')$

Pirsa: 19050023 Page 15/27

New postulates

(H): A quantum system is associated with a separable Hilbert space, \mathcal{H} .

(M): Measurements can be represented by collections of projections $\{\Pi_1, \Pi_2 \ldots\}$ which sum to the identity, where each projection corresponds to an outcome of the measurement.

(CM): The classical mixture of measurements $\{\Pi_1, \Pi_2 ...\}$ and $\{\Pi'_1, \Pi'_2 ...\}$ with probabilities p and (1-p) resp. can be represented by $\{p\Pi_1 + (1-p)\Pi'_1, p\Pi_2 + (1-p)\Pi'_2 ...\}$.

Pirsa: 19050023 Page 16/27

Even smaller sets of measurements

☐ Is the set of projective-simulable POMs the "smallest" measurement set from which we can prove a Gleason-type theorem?

□ No!

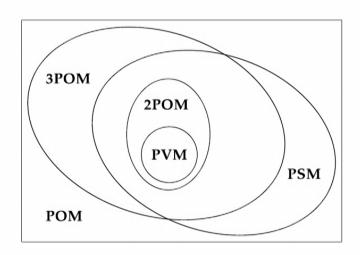
Pirsa: 19050023 Page 17/27

A subset of projective simulable measurements

PSM′ consists of projective-simulable POMs of with two outcomes and those of the form

$$\{E/2, E/2, I-E\}$$
 or $\{E_1/2, E_2/2, I-(E_1+E_2)/2\}$

for $E, E_1, E_2 \in \mathcal{E}(\mathcal{H})$ such that $E_1 + E_2 \in \mathcal{E}(\mathcal{H})$.



Pirsa: 19050023 Page 18/27

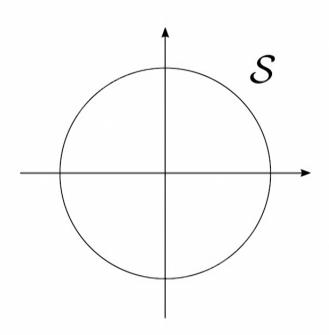
Summary and further work

- □ Projective simulable POMs necessitate the density operator and Born rule formalism
- ☐ An additional postulate is identified that may be added to Gleason's original setting to extend the result to dimension two
 - States how classical mixtures of projective measurements are represented
- □ A smaller set of POMs, **PSM**′, shown to yield Gleason-type theorem
 - Significant weakening of the assumption of all POMs or all three outcome POMs².
- □ Is **PSM**′ minimal?
- □ Infinite dimensions.

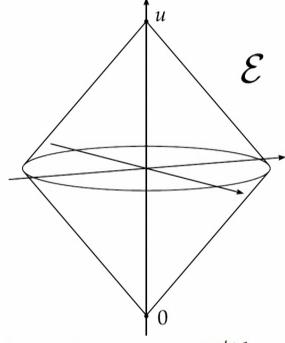
Pirsa: 19050023 Page 19/27

²Granström, "Gleason's theorem".

General probabilistic theories



Convex subset of \mathbb{R}^{d+1}



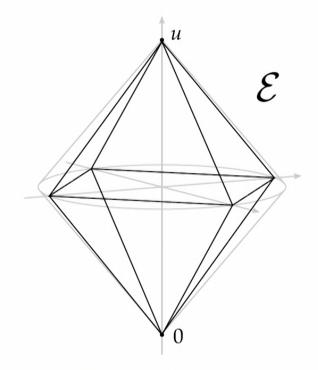
A set of vectors $e \in \mathbb{R}^{d+1}$ such that $0 \leq e \cdot w \leq 1$ for all $w \in \mathcal{S}$

Pirsa: 19050023 Page 20/27

No-restriction hypothesis

□ No-restriction: $\mathcal{E} = \{e \in \mathbb{R}^{d+1} | 0 \le e \cdot w \le 1 \forall w \in \mathcal{S}\}$

- lacktrice Restriction: ${\mathcal E}$ is a subset of this set
 - \square including 0 and u
 - lacksquare and u-e for all $e\in\mathcal{E}$



Pirsa: 19050023 Page 21/27

Gleason-type theorem

Theorem (Wright and Weigert (in preparation))

Let S and E be the state and effect spaces of a GPT. A function $f: E \to [0,1]$ satisfying

$$f(e_1) + f(e_2) + \ldots = 1$$

for any collection of effects $\{e_1, e_2 ...\}$ satisfying $e_1 + e_2 + ... = u$ necessarily admits an expression

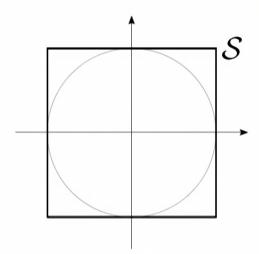
$$f(e) = e \cdot w$$

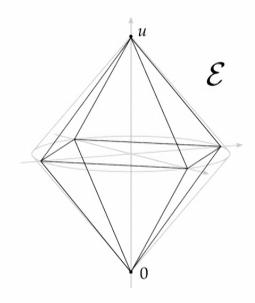
for all $e \in \mathcal{E}$ and some state $w \in \mathcal{S}$ if and only if the GPT satisfies the no-restriction hypothesis.

Pirsa: 19050023 Page 22/27

Comments

- □ Theorem reduces to Busch's Gleason type theorem if quantum state and effect spaces are chosen
- □ Restricted effect spaces lead to larger state spaces:





Pirsa: 19050023 Page 23/27

Summary

- ☐ GPTs satisfying the no-restriction hypothesis yield Gleason-type theorems
- ☐ "Restricted" GPTs do not
- □ Requiring the existence of a Gleason-type theorem rules out such theories
- □ Sainz et al. showed GPTs which produce the set of almost quantum correlations must violate the no-restriction hypothesis
 - and therefore do not yield a Gleason-type theorem
- ☐ Why might one require the existence of a Gleason-type theorem?

Pirsa: 19050023 Page 24/27

Thank you for listening!

Wright, V. J. and Weigert S. A Gleason-type theorem for qubits based on mixtures of projective measurements. J. Phys. A (2018).

Wright, V. J. and Weigert S. Only general probabilistic theories satisfying the no-restriction hypothesis admit a Gleason-type theorem. In preparation.

Pirsa: 19050023 Page 25/27

Good question

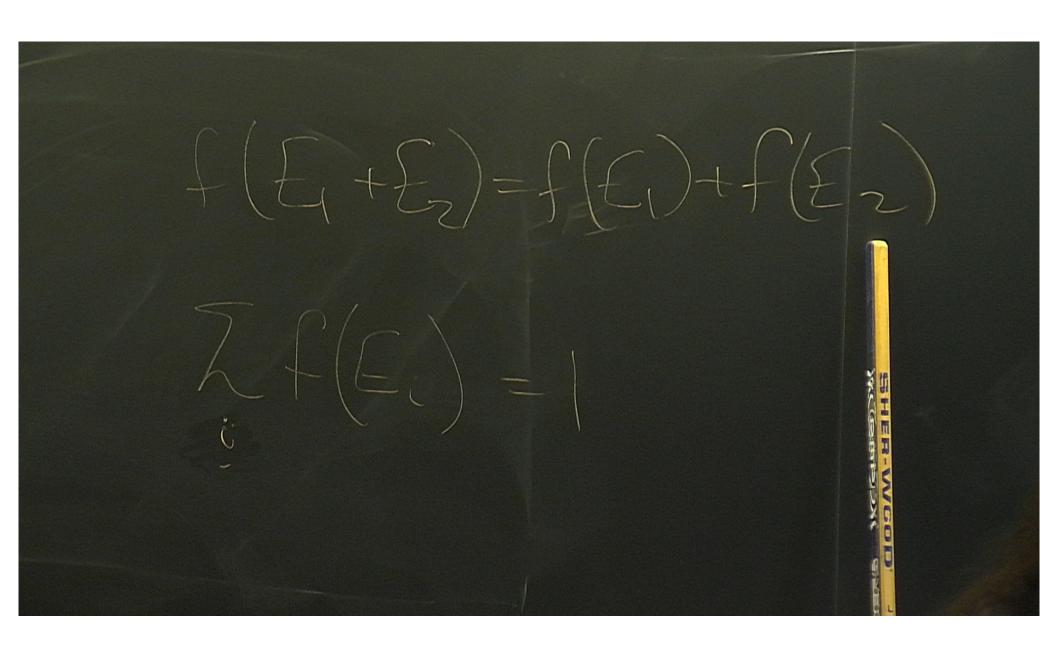
Assumptions in GPT framework:

- \square Countable set of fiducial measurement outcomes \implies convex state space $\mathcal S$
- \square Effects are *linear* functionals on vector space containing S

Our assumptions:

- \square Effect space ${\mathcal E}$
- \square States are *additive* maps on $\mathcal E$

Pirsa: 19050023 Page 26/27



Pirsa: 19050023 Page 27/27