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Abstract: & nbsp;

Using Monte Carlo methods we explore how well does the recent proposal for& nbsp;computing conformal dimensions, using a large charge
expansion, work. We& nbsp;focus on the O(2) and the O(4) Wilson-Fisher fixed points as test cases.& nbsp;Since the traditional Monte Carlo
approach suffers from a severe& nbsp;signal-to-noise ratio problem in the large charge sectors, we use worldline& nbsp;formulations that eliminate
such problems. In particular we argue that the& nbsp;O(4) model can be simplified drastically by studying what we refer to as a "qubit" formulation.
Such simpler&nbsp; formulations of quantum field theories& nbsp;have become interesting recently from the perspective of quantum
computing.&nbsp;Using our studies we confirm that the conformal dimensions of both conformal&nbsp;field theories with O(2) and O(4)

symmetries obey a simple formula predicted& nbsp;by the large charge expansion. We also compute the two leading universal lowé& nbsp;energy
constants in both cases, that play an important role in the large& nbsp;charge expansion.
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Motivation

Conformal field theories are characterized by conformal dimensions
Dq of primary field operators.
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Another proposal: “Q-expansion” (large charge expansion)

|dea:
|dentify a conserved charge Q in the theory

Consider computing the conformal dimension Dq associated with
the primary field with large Q.

Use “radial quantization”, to argue that computing Dq is equivalent to
computing the energy of the theory on a sphere with unit radius.

When Q is large this energy can be computed in a semiclassical
expansion in an powers of 1/Q starting using ideas of effective field
theories with unknown constants.
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|dea:
Since the only scale in the problem is R we must be able to
compute E(R) as a function of R in the charge Q sector.

E(R) = 47 R? x (EnergyDensity)

(Charge Density) ~ ( Q )

47 R?
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Q: How well does this approach work in practice?

A: Compute: Dg using a Monte Carlo method and check!

Challenge: Computing Dg using Monte Carlo methods
suffers from severe signal to noise ratio problems with
conventional methods for large Q.
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New ideas for studying CFTs using Monte Carlo Methods!
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New ideas for studying CFTs using Monte Carlo Methods!

|

Worldline Formulations

!

Qubit Formulations
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The O(2) Model
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The O(2) Model

Traditional

Z /[du] e /1 2ana cos(O—0
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The O(2) Model

Traditional Worldline

4 /[d“] e 12, _cos(0,—0
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Partition function with sources and sinks

ZQ Z: H Iq...( ;-'2)] \ H ""(Z:(Qx.u

(9]

5( D (@u = Goan — Q) (D (4
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Partition function with sources and sinks

ZQ Z: H I(J-..(;-'Q)I \ H ""(X(Qx.u

(9]

5( (@ = Goan — Q) (D (4
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Partition function with sources and sinks

Zo = 3 |IT faat3/2)] | TI 0( D" (9

(4]

5( (00 = Guan = Q) 6( D (9

Scaling:

Zo ~ 1 LPe
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Partition function with sources and sinks

Zo = S 11 LL”(;,Q)]\ [T (D (an q\,tu))‘

[q] X, x XFEXi ,X¢ O

5(2:(qnn Qx; -0 Q)rf(E:(qhﬂ 4 —aa + Q)

()

Scaling:

Zo ~ 1 LPe

Worm algorithms can compute

Zq/Zq-1 ~ 1/L2
Aqg = Dqg — Dg-1
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Previous calculations for Dq only up to Q=4

¢ o MC Bootstrap

0.518(1) 0.5190(1) 0.5190(1)
1.234(3) 1.23(2) 1.236(1) 1.236(3)
2.1001) 2.10(1) 2.108(2)

3.114(4) 3.103(8) 3.108(6)
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Previous calculations for Dq only up to Q=4

¢ ° MC Bootstrap

0.518(1) 0.5190(1) 0.5190(1)
1.234(3) 1.23(2) 1.236(1) 1.236(3)
2.10(1) 2.10(1) 2.108(2)

3.114(4) 3.103(8) 3.108(6)

Our results:

A(Q) D(Q) A(Q) D(Q)

0.516(3) 0.516(3) 1.332(5) 6.841(8)
0.722(4) 1.238(5) ' 1.437(4) 8.278(9)
0.878(4) 2.116(6) 1.518(2) 9.796(9)
1.012(2) 3.128(6) 1.603(2) 11.399(10)
1.137(2) 4.265(6) [.678(5) 13.077(11)
1.243(3) 5.509(7) 1.748(5) 14.825(12)
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Q: How well does the Q-expansion work?
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Q: How well does the Q-expansion work?
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Q: How well does the Q-expansion work?

6
Q

2

Fit Data: Dg 1.195(10) Q%% + 0.075(10) Q'/* — 0.094

T

analytic calculation
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Q: How well does the Q-expansion work?

6
Q

2

Fit Data: Dg 1.195(10) Q%% + 0.075(10) Q'/* — 0.094

T

analytic calculation
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Q: What about the O(4) Wilson-Fisher fixed point, especially
since it has two charges ()., Jr) that characterizes “charged
sectors.”
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Q: What about the O(4) Wilson-Fisher fixed point, especially
since it has two charges ()., Jr) that characterizes “charged
sectors.”

Since the traditional dual representations are quite complex, can
we construct a simpler formulation of the theory?
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Q: What about the O(4) Wilson-Fisher fixed point, especially
since it has two charges ()., Jr) that characterizes “charged
sectors.”

Since the traditional dual representations are quite complex, can
we construct a simpler formulation of the theory?
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Q: What about the O(4) Wilson-Fisher fixed point, especially
since it has two charges (., Jr) that characterizes “charged
sectors.”

Since the traditional dual representations are quite complex, can
we construct a simpler formulation of the theory?

Qubit formulation of the O(4) Wilson-Fisher fixed point!
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Qubit Regularization of QFTs
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Qubit Regularization of QFTs

Canonical commutation relation of QFTs requires an infinite dimensional
Hilbert space per lattice site.

[&(x), 7(y)] = idx,
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Qubit Regularization of QFTs

Canonical commutation relation of QFTs requires an infinite dimensional
Hilbert space per lattice site.

[6(x), 7(y)] = idx,

Traditional formulations of scalar and gauge field theories begin with
this commutation relation and hence require an infinite dimensional
Hilbert space per spatial site.

ition: Qubit Regularization of a QFT reproduces the QFT of

with a finite dimensional Hilbert space per lattice site
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Qubit Regularization of QFTs

Canonical commutation relation of QFTs requires an infinite dimensional
Hilbert space per lattice site.

[6(x), 7(y)] = idx,

Traditional formulations of scalar and gauge field theories begin with
this commutation relation and hence require an infinite dimensional
Hilbert space per spatial site.

finition: Qubit Reqgularization of a QFT reproduces the QFT of
with a finite dimensional Hilbert space per lattice site

Fermions are already qubits, but with anti-commutation relations.
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Insight from non-perturbative Wilson's RG
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Insight from non-perturbative Wilson's RG

1ce of all microscopi

latt

Qubit Regularization 1

Qubit Regularization 2
-
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ldentifying QCPs

usually requires tools

Insight from non-perturbative Wilson's RG

peyond perturbation

e ‘ theory!
ypace of all microscopi

lattice models

Qubit Regularization 1

Quantum
Critical Point

Relevant direction

ontinuum QFT

Fixed Point Qubit Regularization 2

-

\

»

\

o
L

S A
ety 8%
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This approach to quantum field theories is well known since 1980s,
but was not explored essentially due to lack of computational tools.

Pirsa: 19050022 Page 35/102



This approach to quantum field theories is well known since 1980s,
but was not explored essentially due to lack of computational tools.

They are often standard in condensed matter literature, but the focus
Is usually on finding exotic phenomena.
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This approach to quantum field theories is well known since 1980s,
but was not explored essentially due to lack of computational tools.

They are often standard in condensed matter literature, but the focus
Is usually on finding exotic phenomena.

New algorithms become available and they are often simpler than
traditional QFT but still reproduce the physics of interest.
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This approach to quantum field theories is well known since 1980s,
but was not explored essentially due to lack of computational tools.

They are often standard in condensed matter literature, but the focus
Is usually on finding exotic phenomena.

New algorithms become available and they are often simpler than
traditional QFT but still reproduce the physics of interest.

Perhaps some day we can also design a quantum computer and
develop algorithms to study them!
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This approach to quantum field theories is well known since 1980s,
but was not explored essentially due to lack of computational tools.

They are often standard in condensed matter literature, but the focus
Is usually on finding exotic phenomena.

New algorithms become available and they are often simpler than
traditional QFT but still reproduce the physics of interest.

Perhaps some day we can also design a quantum computer and
develop algorithms to study them!

N the O(4) model!
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Qubit Regularization of the O(4) scalar QFT
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Qubit Regularization of the O(4) scalar QFT

Model with four flavors of hardcore bosons
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Qubit Regularization of the O(4) scalar QFT

Model with four flavors of hardcore bosons

Hamiltonian
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Qubit Regularization of the O(4) scalar QFT

Model with four flavors of hardcore bosons
Hamiltonian

ar ady.a + a, a)

X, (Y v,y

(hopping term)

t 2 (al'”a‘:},lu + a\/.rlax,ll)

(xy).a

(pair creation-annihilation term)

+ 1) al 4aka
X, X

(chemical potential term)
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Local Hilbert Space is five dimensional (requires 3-qubits)

5.r) 9, gk.v), qi.qk =1/2,-1/2

Fock vacuum O(4) vector (1/2,1/2) sector
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Local Hilbert Space is five dimensional (requires 3-qubits)

s, r) 19(,9Rr.Y),  q[. 9k

Fock vacuum O(4) vector (1/2,1/2) sector

We denote (97, gr)
as the z-components in the (Ji,Jr) sector
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Local Hilbert Space is five dimensional (requires 3-qubits)

s, r) 19(,9Rr.Y),  q[. 9k

Fock vacuum O(4) vector (1/2,1/2) sector

We denote (97, gr)
as the z-components in the (Ji,Jr) sector
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Local Hilbert Space is five dimensional (requires 3-qubits)

s, r)

Fock vacuum

Pictorially:

(0,0) sector

Fock Vacuum
(Monomers)

9[,9r.Y), q[.qr =1/2,-1/2

O(4) vector (1/2,1/2) sector

We denote (97, 9%)
as the z-components in the (Ji,jr) sector

(1/2,1/2) sector

by 4y

(1/2,1/2) (-1/2,1/2)  (1/2,-1/2) (-1/2,-1/2)

(qL-qR)
particles (worldlines)
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Hopping term
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Euclidean Qubit O(4) Model
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Euclidean Qubit O(4) Model

VA X/:l’f!j.-._lffl|'l"['(f (8 r.‘nH‘_1 !”._)'f (ty—1ty ;\N.___( fllg)r -M'H-_)

PR

4 X ][ Wi
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Euclidean Qubit O(4) Model

VA X /Zf”i""'”l|'|.1'(f (3 r;ui!‘_{ ”:'{ (t =ty )H,y oo Hg)r anH._)

P

Z X 1[ Wi,

Relativistic Limit
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Euclidean Qubit O(4) Model

PR

A X/:Jf"""”ﬂ'rl'(f (3 hl”"‘ ”-_:l.« (ty—1y -.wH]___( ”-J)r -rLuH._)

Z X I[ Wi,

Relativistic Limit
W

Hamiltonian limit & — 0

Can study using classical QMC
(directed loop/worm algorithms)
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Observables

Order Parameter Suceptibility

l o= .
ot \ / dt TI’((‘ \ ~"”Jr m€ ‘”'ir |||)

rr

Winding Number Susceptibility

1 \
/’h Ld :l:, (QW)L I

<2
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Observables

Order Parameter Suceptibility

1 ~ ] £\ ¢
\ Zld \._. / dt TI’((‘ I ~”‘]' m€ ‘”‘ir m)

rr

Winding Number Susceptibility

1 \
fs Ld )\ (Qw)h )

“2

Near the critical point we expect

\/IIL:) n f((U UC)Ll_!m)

psL = g((U— Uc)LY™)
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Observables

Order Parameter Suceptibility

1 . .
/1" \ / (Jrf TI’((‘ ' “”Jr m€ !”"r |II)

rr

Winding Number Susceptibility

1 \
/’h Ld :l:u (Qw)h )

<2

Near the critical point we expect y

\/IIL:) n f((U UC)Ll nn)

psL = g((U— Uc)LY™)

50

(U-uyL"”

5

Ue = 1.655394(3)

0.746(3), 7

0.0353(10)
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Observables

Order Parameter Suceptibility

I ) A3 '
ZLd D / dt TI’((‘ I “”‘]' m€ ‘”‘ir |II)

rr

Winding Number Susceptibility

1 .‘
s Ld A\ (Qw)h )

Near the critical point we expect
\/IIL:’ 7] f((U UC)Ll m:)

psL = g((U— Uc)LY™)

50 5

(U-uL"

Ue = 1.655394(3)
0.746(3), 1 = 0.0353(10)

v = 0.749(2), n = 0.0365(10)
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Large Charge Sectors “Q”

Now sectors are labeled with Q = (ji. , jr )
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Large Charge Sectors “Q"”

Now sectors are labeled with Q = ( ji. , jr )

Can choose any subsector (. qf.Jr. 9%) Daq will be the same!
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Large Charge Sectors “Q”

Now sectors are labeled with Q = ( ji , jr )

Can choose any subsector (. 4f.Jr. 9%) Daq will be the same!

P

L x L box
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Large Charge Sectors “Q"
Now sectors are labeled withQ = ( ji. , jr )

Can choose any subsector (. qf.Jr. 9%) Daq will be the same!

Scaling:

1

P

L x L box
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Large Charge Sectors “Q"”

Now sectors are labeled with Q = ( j. , jr )
Can choose any subsector (. 4f.Jr. 9%) Daq will be the same!

Scaling:

1

Z{JJFJI") ~ L!)(J‘f.ﬂ\]

Worm algorithms can compute

‘ 1
ZJ"! ‘Jr‘f\' Zj; j;‘ ™~ LA

L x L box A = D(ji.jr) — DU, Jjr)
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Large Charge Sectors “Q”

Now sectors are labeled with Q = ( ji , jr )

Can choose any subsector (. qf.Jr. 9%) Daq will be the same!

Scaling:
1

Z{JJFJI\)) ~ L!)(J‘f.ﬂ\]

Worm algorithms can compute

| 1
Zicinl Ly ™~ Ta

L x L box A = D(j.jr) — DU, Jjr)

Q: How do we construct an operator in a given ( j.,Qi?, |r, gr?) sector?
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We need to spread out the charges due to the hard core constraint!
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We need to spread out the charges due to the hard core constraint!

Location of charges
at t=0 and t=L/2
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We need to spread out the charges due to the hard core constraint!

Location of charges
at t=0 and t=L/2

At t=0 on each site we can
create sources of two types
of particles in (1/2,1/2) sector

(1/2172) «  ™>(1/2,-1/2)

We can annihilate them att = L/2
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We need to spread out the charges due to the hard core constraint!

Location of charges
at t=0 and t=L/2

At t=0 on each site we can
create sources of two types
of particles in (1/2,1/2) sector

(12172) «  ™(1/2,-1/2)

We can annihilate them att = L/2

We then need to project on to one
of the (j.,Jr) sector.
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The (Q,Q) sector is easy. We simply create sources from the same particle.
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The (Q,Q) sector is easy. We simply create sources from the same particle.

bhh b b

2Q-1 2Q

L= Q. q
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The (Q,Q) sector is easy. We simply create sources from the same particle.

1 2 3 4 2Q-1 2Q
i=Q.q =Q; Jr=Q,qr
Other sectors need some work.

For example: (Q,Q-1) can be obtained from

RNy

2Q-1 2Q
a | =Q,qi=Q; jr=Q,.qr = Q —1)

+ A =Q0Q.q=Q; jr=Q —1,qr
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Need superpositions to construct (Q,Q-1)!

Example: Q=1

| _ _ 1
ji=1q =1 jr=1q%=0) = 2<+ A A 4)
\(.f‘
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Need superpositions to construct (Q,Q-1)!

Example: Q=1

1
R R LI RR Y
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Need superpositions to construct (Q,Q-1)!

Example: Q=1

1
ju=1qi=1 jr=19r=0) = /2 < + + + + +)
\/
SR 1 zZ __ s 3 _ O zZ 0\ 1 4 4 + *
Jl’— 'qf_ ' ' qR / \/ré -
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Need superpositions to construct (Q,Q-1)!

Example: Q=1

1

ju=1,q9{ =1, jr=1,q9% =0) 2<+ + ‘ + 4)
\/

| , . ) 1

jL=1q=1 jgr=0qgr=0) = 7 4 + - + *

(1.1)

RS

(1,0)

Note for j. not equal to jr sectors have cancellations
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Predictions from EFT
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Predictions from EFT

O(4) fields: g(r, t) € SU(2) € ¥ (spatial manifold (sphere))
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Predictions from EFT

O(4) fields: g(r, t) € SU(2) € Y (spatial manifold (sphere))

Effective Action at the conformal point:

. ‘.) .

. \ V & : C1/2 |

S / dt d¥ { —— ||dg ‘ _ R||dg| ]
JRxY 27cy )y

\ 3V 2, -_1/

Tr(9, 91 0" g).
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Input:  DVI - 18920x1080p@60Hz
Output:  SDI - 1920x1080I@60Hz

Predictions from EFT

O(4) fields: g(r, t) € SU(2) € Y (spatial manifold (sphere))

Effective Action at the conformal point:

( 9
L R||dg|| 4 }

o

:;\, ‘._)f':; 2

AN

Tr(9, 9" 0" g).

Conserved Noether charges:

2, J/ll.\:t'_;(),);;f;'. (@M ) /tl.\:('.;f)||_f[il_f}.
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Predictions from EFT

O(4) fields: g(r, t) € SU(2) € Y (spatial manifold (sphere))

Effective Action at the conformal point:

. ‘.) .

’ 1 V& : C1/2 |

S / dt dX { — dg : _ R||dg|l + ]
JRxY 27cy o

\ 3V 2, :/

Tr(9, 9" 0" g).
Conserved Noether charges:

(2, f/ll_\:r'.;{)”g_r;'. (@M fl/tl.\:('.;f)“_f[i_f}.

Solve the theory in a semiclassical expansion in a given charged
sector.
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Predictions:

JL=Jr =Yy Large
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Predictions:

JL=Jjr =Yy Large,

JL # Jr Large jm max(j., Jr) but small |j; — jr|/jm.
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Predictions:

JL=Jr =Yy Large

JL # Jr Large jm max(Jj., jr) but small [ji — jr|/jm-

Note: the leading corrections depend only on the coefficient ¢z
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Predictions:

JL # Jr Large jm max(j., Jr) but small |j; — jr|/jm.

Note: the leading corrections depend only on the coefficient ¢z

Once we know c3z2 and c12 we have a prediction for all D(j.,jr)
in the large charge expansion!
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Worm algorithms can be
used to compute
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Worm algorithms can be
used to compute
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Worm algorithms can be
used to compute
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Worm algorithms can be
used to compute
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Large charge results at the O(4) Wilson-Fisher fixed point

D(j.7) M D(j.j)

(this work) | (from [26]) || |(this work) |(from [26])
0.515(3) | 0.5180(3) |[1] 1.185(4) | 1.1855(5) |
1.989(5) | LLOTGR(10) 112 2.915(6) 2.875(5H)
3.945(6) 3] 5.069(7) -
6.284(R) | 7.575(9) -
8.949(10) 5] 10.386(11) .

‘)
‘)
WA
‘)

o
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Q: How well does the Q-expansion work in the O(4) case?

12

10 ¢t
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Q: How well does the Q-expansion work in the O(4) case?

12

10 ¢t

056 1 15 2 25 3 35 4 45 5
i

1.068 j*/? + 0.083 j'/? — 0.094
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Qubit Regularization of O(3) scalar QFT

Use two qubits per site:

s, r) im,r),m=0,+1, -1
singlet triplet
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Qubit Regularization of O(3) scalar QFT

Use two qubits per site:

s, r) im,r),m=0,+1, -1
singlet triplet

Fock
Vacuum Spin-1 particle

Pirsa: 19050022 Page 91/102



Pirsa: 19050022

Qubit Regular

[
Use two qubits per site:

|5, 1)

singlet

Fock
Vacuum

ization of O(3) scalar QFT

im,r),m=0,+1, -1
triplet

Spin-1 particle

Hamiltonian is the same as the O(4) model but with three flavors of

hardcore bosons!




Euclidean Qubit O(3) Model

z =% /jn,_...nl|‘|a-(, (8

P

7= ST

Relativistic Limit
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Euclidean Qubit O(3) Model

Z X /yn,_...nl|'|'r(, B=ti)Hy (_ ) e~ (t

P

4 X H Wi,

Relativistic Limit

Hamiltonian limit & — 0

Can study using classical QMC
(directed loop/worm algorithms)
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Wi

son-Fisher fixed point

® L=64

L=72
® L=96
® L=112

v = 0.7113(11), 1 = 0.0378(6)

3.5 1
>] @ L=64

L=72

301 & L=96

& L=112
2.5
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, = 0.7113(11), 7 = 0.0378(6)

Wilson-Fisher fixed point

[ ] 35
® L=64 o >] @ L=64
L=72 L=72
® L=96 . 301 & L=96

® L=112 ‘ ® L=112
2.54

,‘r) (l)
(J — Jo )LV

x2=0.53, /. =0.244329(11)
vV

=0.7113(0), n=0.038(0)

Page 97/102



v =0.7113(11), n = 0.0378(6)

Wilson-Fisher fixed point

| & L=64 O 1 & L=64

‘ L=72 L=72
® L=96 . | & L=96

| & L=112 ' é L=112
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x?=0.53, ). =0.244329(11)
v=0.7113(0), n = 0.038(0)

We see the Gaussian fixed point in d=3+1. We also see asymptotic
freedom in d=1+1 but with caveats!
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Conclusions

The recent proposal of Q-expansion for CFTs seems like a promising
approach. It would be interesting to explore other theories with it.
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Conclusions

The recent proposal of Q-expansion for CFTs seems like a promising
approach. It would be interesting to explore other theories with it.

It may be possible to construct qubit Hamiltonians to study the
large charge sectors more easily than traditional lattice models.

From a quantum computational point of view, an interesting
question is to ask is can we construct qubit Hamiltonians to study

quantum field theories in general?

If true, perhaps this is yet another way to regularize quantum field
theories! We can call it “qubit reqgularizations!’
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