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Abstract: What is the black hole in quantum mechanics? We examine this problem in a self-consistent manner. First, we analyze time evolution of a
4D spherically symmetric collapsing matter including the back reaction of particle creation that occurs in the time-dependent spacetime. As aresult,
a compact high-density star with no horizon or singularity is formed and eventually evaporates. This is a quantum black hole. We can construct a
self-consistent solution of the semi-classical Einstein equation showing this structure. In fact, we construct the metric, evaluate the expectation
values of the energy momentum tensor, and prove the self-consistency under some assumptions. Large pressure appears in the angular direction to
support this black hole, which is consistent with 4D Weyl anomaly. When the black hole is formed adiabatically in the heat bath, integrating the
entropy density over the interior volume reproduces the area law.& nbsp;
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What is the “black hole” in QM?
=BH evaporates by nature.
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Our approach

* Reconsider the time evolution of a spherical
collapsing matter.

N . 7

What happens?
Horizon is formed or not?

v N
I - . . . . . - .

: Generically, particle creation occurs in a time-dependent metric (even without horizon).
: = We need to include the back reaction of the matter and particle creation.

But....the back reaction is negligible?

Ate—:"ua""lwg > M"Arcollapse

=No!
=>Consider the both evolution in a single time coordinate!
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Basic idea

* H. Kawai, Y. Matsuo and Y. Y, Int. J. Mod. Phys. A 28, 1350050 (2013)
* H. Kawai and Y. Y, Int. J. Mod. Phys. A 30, 1550091 (2015)

* H. Kawai and Y. Y, Phys.Rev.D.93.044011 (2016)

* H. Kawai and Y. Y, Universe 3, 51, (2017)

* H. Kawai and Y.Y, Work in Progress
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Basic idea: step1

Imagine that a spherical “BH” is evaporating.
Add a spherical thin shell (or a particle) to it.

Hawking radiation

particle spherical thin shell

What happens if evolution of the matter and spacetime is considered?
=The shell will never reach the Schwarzschild radius.
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_The motion of the particle near the “BH”

A Hawking radiation A naive ansatz: =~ time-dependent Schwarzschild metric
rs(t) -1
: : a(t) - a(t) : N
//'/' ds® = - (1 - (—) dt® + (‘1 e ) dré + reda*
r r
@308 d (t) 20 i |
. e S J —a(t) = — —— ephan-Boltzmann law
a(t) = 2GM(t) ~~ < a e of Ty = e
b FRTaRRTan TR R E iR
v 2 | a=26M :
- S ¢ | intensity: 0 = 0(1)~hGN !
D Attife’“’agfa i ! (N=d.o.f. of fields)
For ry~a,

a particle with any (I, m) behaves ultra-relativistic:
dr:(t) n(t)—alt)
ge Ao
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Solve e.o.m of the particle

d 20
We are now interested in 1, (t)~a(t) and focus on T b ey

Ar(t) = r(t) — a(t) < a(t).

Then, we have

drs(t) _ () —alt) (L) —alt)

TR E e e
dAr(t) Ar(t) da(t)
= = — = _
dt a(t) dt
=The general solution is given by
J-t dt! t J-t! de' 1
Ar(t) =cge “t0alt) + | dt'{- ( (t Je & ay
to

' In the time scale At ~ a(t) (<< 9—-) 5 ~ da(t)[ dt'e a(”

| da(t) |
' a(t) ~const. and —— =const. 8, dac t=ty
'____( ____________________ Gt 0w e d( )a(t)(l-—e a(t)

da(t)
dt

t
a(t) + Ce alt)

Pirsa: 19050016 Page 8/40



r The motion of the particle near the “BH”

Hawking radiation A naive ansatz: = time-dependent Schwarzschild metric
rs(t) a(t) a(t) _
//'/' (1 ——)d t? (1 ——) dr® + rdN*
T ¥
d ( ) L & Stephan-Bolt |
e g . —_—t) = — — ephan-Boltzmann law
- 2 ,
a(t) er(t) at a(t) of Ty = o
b a=2GM
. , h t ! intensity: 0 = 0(1)~hGN
— At;if-e~a3/0 ’ - i (N=d.o.f. of fields)

For ry~a,
a particle with any (I, m) behaves ultra-relativistic:

dn: (t) . T};(t) - a.(t.)
\ dt e
da (t)
= 15(t) = a(t) — a(t) + Ce “a®
20 E"?E‘c QF
- a(t) + 200 ¢ b‘*‘f&ﬁm

= Universally, particles will approach a(t) + ﬁ
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The particle will never cross a(t) .

* The proper length of Ar = 2—;— is given by

20
Al =g Ar = | ——— b
Grr r—a(t) r:a(t)+a‘_z(% a(t)
a(t) 20
S Py 0
\ a(t) | intensity: 0 = 0(1)~hGN !
: (N=d.o.f. of fields)
=25 NI, L 2

! L, = VhG
if N> 1

=>Physically (at the semi-classical level) the shell is always outside a(t).
=The shell will never cross a(t). (Note: No coordinate singularity.)

r
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Basic idea: step?2

Radiation is emitted from the
metric around the shell.

g’

radiation \
(radiation from the shell with AM)

+(redshift factor) (radiation from the core BH with M)
= (radiation from a BH with M + AM)

=This composite system (=shell+BH) behaves like a larger BH.
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Basic idea: step3

~Each shell is evaporating and-.
20

approachingr = a’ 4

contmtfous Regard this Apply the previous result
collapsing matter (not BH) as many shells. to each shell recursively.
The shells pile up and /
form a dense object.
/ M = _\

26
The matter and radiation are filled inside This looks like an ordinary BH

from the outside.

20
=a+—=R
P a (@), =This should be quantum BH!

which is the boundary of the object (surface).
= No horizon exists.
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Talk Plan

How to solve this in a self-consistent way?

St}e/gZ: Evaluate (T},,,) on g,,,,.

. o =\87TG(T;V>

Stepl: Construct a candidate Step3: Put this and
metric g, by a simple mode|. determine the self-consistent g,,,,.

Step4: Consistency check
Curvature,
Stephan-Boltzmann law,
Hawking temperature,
energy condition,
entropy-information.
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Step1. Construction of
the candidate metric g,,,,
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Preliminary: case of single shell (1/3)

Consider time evolution of a spherical null shell.

As we have seen, any matter

behaves lightlike near the
Schwarzschild radius.
l What happens?

rs(u)

radiation

AU === e T T
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Preliminary: case of single shell (2/3)

Approximation: Neglect reflection of radiation for simplicity.

rt pm ;
(Tuudy A part is scattered

by gravitational potential.

(Later we will remove this

U artificial assumption.)
=outgoing Vaidya metric:
r —a(u) .
ds? = ———=du?® — 2drdu + r*dQ*
r
outgoing radial 3 (u)
null energy flow~ (i = — > a(u) is not fixed yet.
r
rq =
rs(u)

radiation

flat ds? = —dU? — 2dUdr + r2dQ?
> U
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Preliminary: case of single shell (3/3)

We need to connect two time coordinates U and u.

A =This null shell moves lightlike in the both coordinates.
r NTs(u)
T = a(u) ; o
ds = [ - du-l-Zdr‘du-l—r(/ﬁ{
- =g atr =)
a()  flat " ds? = —[dU + 2dr]dU + r2gfi?
> U

S Oatr re(u)

=>conhection condition:

a(u)
dU = =2dr;, =1 - du
: ( rs(u))

=If a function a(u) is given,
dry( o) =
‘ U=U(u) | 7s(u) . (u) — alu)

dir 2r.(i)

are determined.
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A multi-shell model s

Consider a continuous spherical matter.
ﬂ\?’ =Model this as many null shells.

r—a
\FM\]’ dsgm = = du2 — 2dudr + erQZ
. ; r—a ! n.
\”j\ ]_ dsf = — -du? — 2du;dr + r*dQ0?

r
j g . f a;_ . 4 s
. L :l'd.a‘f1 = ]dui] 2du;_,dr + r*dQ?*
S ' i
- -1 T T M
N
]._ﬁz___ 2 _ 9, | 2(12 1} oy e yy,
flat dsg = —dU* — 2dUdr +r“dQ* = "Initial condition :
>u =0 2=
(= e )= ’
; :ore r — a; fi = di_q
connection condition ~———ldu; = -2dr; = ———=du;_,
T Ti
d?"i i —a; dui i —Qj-1 =We want to
= — = —— = ; 0
du, 27, du;_ r,—a, determineu;(U).

Pirsa: 19050016 Page 18/40



Ansatz in the asymptotic stage

Ansatz Each shell behaves like the ordinary evaporating BH when
we look at it from the outside:

dai J Note: At this stage, this eq

= = is NOT derived.
du;

a;

and that each shell has already come close to
20
n=q+— ~asymptotic state
al veeiesmsameeeesna AR

Basic idea.

(We will check the validity of this ansatz later.)

= After taking the continuum limit Aa; = a; —a;_41 K 1,
we can obtain u;(U).
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Note: Derivation of the interior metric (1/2)

dU

Then, n; = log( - can be evaluated as follows: S
E d[] d'u.[' 1 = T —a;
du[ — du k/ a[ 1
e Ni= =log gy = -log === lopg(l +° Sfimy
t i
duj_q
Ma=ag—-a 1K1l > — Ai—Aj-1
ri—a;
2 il
r; =R(a;)) =aq; + : L > (aj—aj—q)
a; 20
aj
1
2oy rqtay 2 & T ((112 = ai.z—l
With the initial conditions ny = ay = 0, we obtain
i E
Ny =——ai
4o
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Note: Derivation of the interior metric (2/2)

The metric at a point (U, 1) is determined by considering
the shell that passes the point:

a.
ds? = - (1 - -l-) du? — 2du;dr + r?dQ?

r
T
20
: a; ri—ai a; 20
with|1——= =— 5=, .
r ri ri r

(zat) = exp (557°) A
— €X — X ] ~ €ex . N B

20
r;=R(a;))=a; + =

=In the continuum limit, we have the interior metric:

ds? =—(1—--) (%%-) dU? —2( )dUdr+r2dnz

20

~ ——eza dUZ —_ 2340 dUdr + T'Zd.QZ . & Static!

re

Note: The inside metric is static although each shell is shrinking.
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The candidate metric

.
a(u . .
- (1 - (r )) du® — 2dudr + r?d? &time-dep

20 L5 & 1 P, B

— R(a(u)) —r= ' - - Rla(w)) —-r* - ' :
~ e "Zo\R(eW) )au? — 2¢"7(R@W) =) 1y 4 12402 estatic
. Large redshif
>The interior is frozen.

da(u)
du

The surface is null:
r = R(a(u))
r

No horizon or trapped region
= (u,r) coord. is complete.

g U Each shell keeps falling.
Aum-efva"-‘/rf =This object is shrinking.

AN
y
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Step2. Evaluation of (T,) on the metric g,




Setup | | -

Consider the interior region. — \}\
The background metric is static: — U
20 r? r?
dsé = ——e’ztﬂde‘Z — 2e40dUdr + r*d0*

eW(U Ddudv + r(U,V)?2dO?,

=>(TW) also should be static:
(T;w) = (Tm,(r», (Tyy) = (Tyy)

Physical origin of (7', ) # 0

= Neglecting the scattering means I e il
(Tyy) =0,
=We need to determine only (Tyy) # O
(Tyu), (g ) > U

(=Later (T, ) # 0.)
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The relations of (T},

*1st eq.
(T4') = 2gYV(Tyy) + 2(Tg) leads to
NS

Yo oy L
(T()> = E(T,u )




4D Weyl anomaly

For simplicity, consider conformal matters.  ¢NOT necessary
=>(T“”) is determined by the 4D Weyl anomaly:

d
(T,u ) — hcng = hawg’ < state-independent id.

where
F = CuyagC*®, g =R, apR*®P — 4R, R*Y + R?

=The metric determines
hc
(T;.tu) =—
302
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step3: Determine the self-consistent g,




The g,, is the self-consistent solution.

Thus , we have obtained

hCW hCW i 2
(18) =25, (Tu)=(Tyw)=5ge% , (Tyy)=0
On the other hand, the metric gives
~6 1 v + o er +
(19 — %, (IUU — (JVV — r_4820 ) (JUV — 0

=G,y = 81G(T,,) is satisfied if we identify

| 8mGh ‘
g = 3 Cw.
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Removing the assumption (Ty,) =0

r

Origin of (Ty,v) # 0

scattering phenomenological eq

(TUV> = ]((TUU)
f(t,7) = 0(1)

Apply to this case

conformal matters = f = const.= 0(1)

General ansatz: ds* = H:ﬂcﬂmd'l'z + B(r)dr? + r2dQ?

= A(r), B(r) can be determined by
_JfGﬁf = 8nG(hc,F — ha,,g)
L Gyy = [Gyy

ri 2 s 2 ,
= R(a(u) [ et " i ———| R(a(u) i A
Zor R (W) )(iu'“ —~ 2e 4001 FR(a) )dudr + r*dn*

g

8nG h(_-'n/

3(1+ f)?
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Self-consistent solution

( . (1 . a(u)

) du® —= 2dudr + rdn?

T
()j‘: ZJ“”)(R(H(”)) Iu)duz - Ze ‘“’(””(R(a(”)) rﬁ)dudr + r2dn?
& I <Non-perturbative solution w.r.t. A

8nGhcy,

The surface exists at g = —

R(a(u) (u) + o 3(1+[)2
u)) =alu) + —
(a(u)) ST

N\

4
(:

™™\ — ke C uvaf
(I“ ) = h"w(‘:wrr[s’(-'r o flawg,

No trapped region

N

v

3
Auzife""(l, /J
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Validity of the classical gravity

In the macroscopic region (r > [p),

R, |R, zR%*F, |R RHvap ~ K l-
e een L e
(c,, plays a role of N .
in the introduction.) if Cw 2l Hawking radiation
=No singularity: 23 J,"\ se
- . : 1
Gy = 81G(T,,) is valid At~— II\ J
as long as ?
a > 1, and . Ar~a | collapsing matter
Lyraviey = R+ O(1)R*.

Note:

1) Cannot describe the final stage of the evaporation.
2) Consistent with the singularity theorem.
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Hawking radiation

* Hawking radiation appears self-consistently:
By a similar manner to Hawking’s derivation,
we can show

0|R,[0) = —= r=—"
(0[N | )_eh-w/T—l’  4ma(u)

0[ flat.lJ \

* Stefan-Boltzmann law is obtained:

ga 0 8rGhcy,
W EhT. | s TemEny

u
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Energy condition of (7, )

R(a)
. a
4m f drr?(~(T{) = 5 = M
L \
L 1 1=F 1
< —(Ttt> = 2 (Trr = 2
0 8nGr G Lk T
The dominant energy ///
condition (p = p; > 0) ﬁ //' —7—7 anisotropic = Not a fluid
is broken. dl //

&

& -
Oy
\T6) = g 16mcy, 12

This large angular pressure supports the object.
g 2.
TOVeq: 0 = 0,p, +@. log \/-.@) +p,) + ~(pr -@@
e, S \&____1___‘ ‘__’_J,_.: e

balance!
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Importance of 4D Wevl anomaly

 Ourkeyeqis
I U
G, = 8nG(T;)
= 32.~Nll?;322
=The solutions are categorized into three cases:

('I'ﬂ‘“) = hc¢y,F — ha,,g

R~ 1z & 1 ¢ perturbative solution w.rt. h

R = o &nonsense

1

R~—=  &non-perturbative solution w.r.t. i

2
NI2

* Summing up vacuum fluctuation modes with large angular momentum
leads to 4D anomaly and the large pressure:

1 1 3
DX o = [l
(T5) = 2 (7i) 8nG 16mey, L
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d
Validity of the ansatz — —L = %,Ti =l za—a

e |tis difficult to study the time-depend transient process in which the
matter approaches the asymptotic metric.

A”\
? r = R(a(u))

asymptotic
k - p T metric gy’
P e e time-dependent
e transient
flat ) U

u

* Here, we consider the s-wave of massless scalar fields in the eikonal
approximation and study the stability of the perturbation from the

asymptotic metric. AT
- I 2 y — (asy)
da; - {” U) Juv = gl“" + h#_v
du, 8 " hyy = 0
B dri _ ni(w) = a;(u) if the initial condition is fine-tuned.
Gy = 81G(T,,) =4 =—= - .
du; 215 (u;) =The ansatz is stable.
du!- L. i —Qi-q s
du;_q r - Q; Cf. *Schwarzian derivative {u, U} = S )

U2 30w
: :giicic J 13
*back reaction of radiating electron Fp; s~ %
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Entropy from the interior

N\ _A
O
K N
. 87Tlf,CW
* The interior metric of the stationary BH is given by g 3(1 + f)?
: 20 = 1__(playlcy? £ _
g2 = 255 mEane B Tty g L o0,
ré 20
* We can evaluate the entropy density as
1 Znvia
5 e
i = 4nris~VN/L,
*  Summing up it over the interior volume, we obtain
R(a)

r 2nv2o ma’ A
S‘fdesff dr\/gyy 4TT*s fdr e = —
O' lp lp /”p

=The information should be stored inside the BH.
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Information recovery by interaction

* Hawking radiation is created inside the collapsing matter.

=The collapsing matter and Hawking radiation interact.

1/)) 1d scattering |'¢l)
s matter

[ W \A:W
L

=We can estimate the scattering time scale
a

ANL,
=>inf0r'm ation recovery? ~scrambling time

Ats.q¢ ~ alog

Cf: Thermodynamics
small interaction
=equilibrium state
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Conclusions

Quantum BH

= a dense star without horizon or singularity that
looks like the classical BH from the outside

No horizon but surface
a? &
At~—

Large tangential pressure ("f'é)
=Stabilize it but breaks

dominant energy condition. . i
77’
(
a(u . Ar~ad
- (1 L )) du? — 2dudr + r?d0?
2 v
dst =¢ . . ] _ -
Z_:Te zern\R@W) ré)(luz — 2e "*U('H/)(R(”(“)) rz)dua_"r dred)
72

" This satisfies G, = 87[6(77“,) if there are many matter fields.
A

*Entropy comes from the interior: § = f dV s = =
p
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Future directions

* What happens to a fallen matter?
=>Interaction b.w. matter and radiation?

* Can we derive the entropy density by counting microstates?
= Work in progress.

* Can we predict some observable effects from this quantum BH?
=Something should bounce at the surface?

e Can we generalize this picture to rotating BHs?
=There is the universal surface of Kerr BHs [Kawai-Y, PRD2016].
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No horizon but surface.
This is the BH.

Thank you very much!
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