Title: The Functional Renormalization Group Equation as an Approach to the Continuum Limit of Tensor Models for Quantum Gravity
Speakers: Tim Koslowski

Series. Quantum Gravity

Date: May 02, 2019 - 2:30 PM

URL.: http://pirsa.org/19050011

Abstract: Tensor Models provide one of the calculationally simplest approaches to defining a partition function for random
discrete& nbsp;geometries. The continuum limit of these discrete models then provides& nbsp;a background-independent construction of a partition
function of & nbsp;continuum geometry, which are candadates for quantum gravity. The& nbsp;blue-print for this approach is provided by the matrix
model approach& nbsp;to two-dimensional quantum gravity. The past ten years have seen alot& nbsp;of progress using (un)colored tensor models to
describe state sums if& nbsp;discrete geometries in more than two dimensions. However, so far one& nbsp;has not yet been able to find a continuum
limit of these models that& nbsp;corresponds geometries with more than two continuum dimensions. This&nbsp;problem can be studied
systematically using exact renormalization& nbsp;group techniques. In this talk 1 will report on joint work with Astrid& nbsp;Eichhorn, Antonio
Perreira, Joseph Ben Geloun, Daniele Oriti, Johannes Lumma, Alicia Castro and Victor Mu\~noz in this direction. In a& nbsp;separate part of the
talk | will explain that the renormalization& nbsp;group is not only a tool to help investigating the continuum limit,& nbsp;but that it in fact also
provides a stand-alone approach to quantumé& nbsp;gravity. In particular, 1 will show how scaling relations follow from& nbsp;cylidrical consistency
relations.
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Each approach has
built-in features and
inherent difficulties

5

Combine approaches

to use built-in feature

of one to solve
difficulty of another
approach
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1. Matrix- and Colored Tensor Models (motivation from QG)

2. Functional Renormalization Group (gencral sctup and the rolc of symmctury)
3. Matrix Model (specific sctup, results, numerical importance of Ward 1dentitics)

4. Colorced Tensor Models (foundations and results)

5. Summary

hawed on work with A. Dachhore Phys Rev: DES (201 3) 64018
Phys Rev D90 12011) 0010, 101049
Amm Tost 17 Poincare Comb Phys Interact. $(2018) po 2, 173210
vaiverse 3 (2019 oo, 84 (muth AL Iorcua. ) Lumma) as woll & aXav 1811 00811
AND Flive Rev D97 (2018 oo 12, 128018 (with J. Den Geloum. A Peveira, D Oriti)

As well as unpublished work with A. Pereira, A. Eichhorn, J. Lumma, A. Castro and V. Mufoz.
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n: Continuum Limit of Lattice QG

model action

S[M) = 1T1(4 AT) +

.h

(A.AT.A.AT)

- - - - l,\T
for real matrices A4 to generate the partition function

/[(LU];\; exp(—S[M]) Z A(ry Z“ (— In(A(7)))

= can be interpreted as a partltlon functlon for
random square-tesselations with weights — In(A(~(A)) ‘ ‘ I
expressible by the Regge action: i Y i Y

Sfl{oggo(A) — kr/ i’\rd(A) = kri—z de—Z(A) ‘

where k; o — ak; x 1/G and kg o A/G

With ,\Td_.z — ll]_(_("\'r) and A"_[ . h]((j) B (](fl — ])

In(N)
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on: (contd.)

we want to take the continuum limit ¢ — () of the tesselation by squares

at fixed volume (V) = a? (Ny)
o,

= take matrix size N to infinity = G vanishes!
= For finite G we need a critical scaling of ¢(/V) with matrix size NV in continuum limit.

= to Investigate the continuum limit of gravity on a random lattice we need to investigate
the double scaling limit of the matrix model partition function

Z = /[(ZJ\I]N exp(—S[M]) = Z A(y) = Z e~ (—In(A()))

Aly)
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odels as a blueprint

ite Euclidean lattice quantum gravity partition function

Y
No- 5 N2

7 = \lim /[{[‘q}, w]_\('_""\-:(%-'_'\)v/” - limZt' s He)a®No

a ()
A

by evaluating the Hermitian random matrix model partiion function with e.g.

Z = lim / [dMij) v x e~ Smotriz(M) Spatriz = =Tr(M.M) + —=Tr(M.M.M)

using the identification of the matrix model amplitude NY*7¢Y — =% with lattice Boltzmann factor

N—=rao

b -

in the large N limit = investigate critical behavior NV = 20 (see e g Brezin Zunn-Tusgy: PLB 288 (1992) 54: C. Ayala: PLB 311 (1993) 55)

Analytic results (benchmarks for RG methods):

fEasy

. Existence of a critical QG theory double scaling limit (one critical exponent: 0 :— NOx3(g)|,—y. = =)

o

2. Existence of a tower of multicritical points (have interpretation of gravity coupled to matter,
¢.g. a hard dimer)

Perimeter Institute, Quantum Gravity Seminar May 2, 2019
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®c want to find non-Gaussian measures for tensor models with a desired symmetry (e.g. ON(N
which exist in the large N limut

Basic tool: Cylindrical consistency. 1.e. an infinite-dimensional cylindrical measure induces a measure for all functions
on finite dimensional (cylindrical) subspaces. s

These induced measures are not independent, but satisty consistency relations:

/ di(u, v) fuv(u) = / dp(u) fu(u) Sorall ftw) that just depend on U

Juy J1
Remarkably, one can define a cylindrical measure (e¢.2. LQG) through a set ol cylindrically consistent measures.
Logical program:

. Identify cylindrical consistency relations as itegration over complementary subspaces

2. Turn the integration over complementary subspace into an interpolation by integrating over a Gaussian
suppression factor == Polchinski-type flow equation

3. Legendre transform of Polchinski-type equation gives a Wetterich-type equation (FRGE)
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model action

S[M] = ~Tr(A.AT) + -I_Tr(A.AT.A.AT)

2 4 N

: .. . T
for real matrices A4 to generate the partition function”

[[d’\]]z\r exp(—S[M]) Z A(r Z e~ (= In(A(7)))

(+)
= can be interpreted as a pamtlon function for

random square-tesselations with weights — In(A(5(A))) l | ‘

expressible by the Regge action: - T ~
*Sl{oggo(A) = kg Ng(A) — kg_o Ny_2(A) {

where k;_o — aky x 1 /G and k‘d ox A / G

with &k, = In(N) and ke = In(g) — ](‘] =1

In(N)
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Definition of a Measure with symmetries

®c want to find non-Gaussian measures for tensor models with a desired symmetry (e.g.
which exist in the large N limit

Basic tool: Cylindrical consistency. l.e. an infinite-dimensional cylindrical measure induces a measure for all functions
on finite dimensional (cylindrical) subspaces.

These induced measures are not independent, but satisty consistency relations:

/ (f‘“(”_ ‘-') A/'f .lr(“) - / (flg(“) '/'{-(”) f()l (J'”lﬂH) lha!_;’m‘! d(?])(’ii(j on U7
JUNV i

J

Remarkably, one can define a cylindrical measure (e¢.g2. LQG) through a set of cylindrically consistent measures.
Logical program:

. Identify cylindrical consistency relations as integration over complementary subspaces

2. Turn the integration over complementary subspace into an interpolation by integrating over a Gaussian
suppression factor == Polchinski-type flow equation

3. Legendre transform of Polchinski-type equation gives a Wetterich-type equation (FRGE)
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1l Renormalization Group Equation

oW,
5.J

vé)) = / [do)ye %l 2o Rrotdo = field vacuum expectation value ¢ =

with an IR suppression term L o.I.o (scale-dependent “mass” term of order & for IR d.o.f.)

: : . : | 1
effective average action TI'i[d] = (6.Jk[¢] — WilJi[0])) — 506.Ri.0

dpOd -

(see e.g. Wetterich Phys. Lett. B, 301: 90)

2 -1
obCyS a flow cqualion Oy = %'l‘l' (f)n Ry, (6 Lxlo) + H.;,) ) C2A Fk—A =9

Interpretation:

. UV limit: saddle point around ¢. 2.0 gives D'ioaox[0] = S0[0] Cr=0 =
2. IR limit: suppression term drops out I';4[0] — I'[0] >
C1
. . . S, . Theory space
= interpolation between bare action and quantum effective action o

(image from Wikipedia)
= tool for systematic mvestigation of bare actions (limitsk — A — o) C3...Cn

Perimeter Institute, Quantum Gravity Seminar May 2, 2019
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ts: Regulator and Theory space

for the systematic investigation of:

1.

2. gencric IR behaviour (universality)

possiblc UV actions (fundamcntal theorics)

e'?’o

It requires only:

notion of scalc scparation (cncoded in /R suppression term ,I,-)-I 0.c2)
“theory space” of admissiblc action functionals (ficld content and symmetrics of barc action)
and in practical calculations a fruncation ansatz and projection onto truncation
(1.c. understanding which cffective operators are most important
and a how to find these operators on RHS of FRGE)

D =

however: IR suppression term 1s often required to break symmetry of the bare action

> flowing Ward 1dentitics

Penimeter Institute. Quantum Gravity Seminar May 2. 2019
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ard Identities

ce of the bare action under a symmetry generated by 6, S[o] — ¢ 5 Talol
(for simplicity assume invariance of the measure [¢o], under this symmetry)
. 1
= Legendre transform yields Wi = G.I'x — G, (0. Ri.0) — 6.Ry.0)

Which ensures that the effective action satisfies the correct Ward identity [im Wils — WE 0

b

Moreover: analogous to derivation of FRGE one finds
1 2 s ,
AWk = = Tr (0 + Re) ™ Ry (T + Rk).(w,frk)@))

= if initial effective average action satisfies initial W then the
effective action satisfies the normal WTI

= symmetry improved flow by solving mWTT and using symmetric couplings as coordinates on W,.T', = 0

Perimeter Institute, Quantum Gravity Seminar May 2, 2019
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: . ‘ | T [+ - - :
= simpler to use even theory space with even action Siauriz = 5 Tr(M.M )+ Tj (M. M".M.M") with real M

symmetry under bi-orthogonal transformations 1/ — O, 1.0}
= generates even effective operators (i.c. of form Tr(A7*" ). Tr(A77") )
= theory space T«[M] = fi (Tr(M?). Te(M*), Tr(M°). ...) has no occurrence of scale
= need to “invent a Laplacian™ that says which d.o.f. are IR, e.g. AN, := (a +b) My,

A useful regulator is (analogous to Litim’s optimized profile):

. 2N 2N
AnS[M] = MyRy(a,b)M,,  with Ry(a,b) = Z ( - 1) 0 (1 N )

a+0b a-+b

Perimeter Institute, Quantum Gravity Seminar May 2, 2019
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we have to impose that the beta functions admit a //N expansion, i.e. 3, = b} (g1,...) + 1/N b (g1, ...) + O(1/N?)

this f1xes the scaling of the operators, by generating upper and lower bounds that admit only one solution at the end.
E.g. tadpole of one ¢, 7(17")? flows into Z
and two-vertex diagram with two ¢, 7-(A")? flows into g4

= dimension of §4 1s fixed; analogously all other operators.

= for couplings defined as ['y[M] = Z Goyom, TI(M™) T (M)
one obtains the canonical dimension from //N expandability as

(“111{!}:.””‘“‘] = N' | Zi. | Tk

Perimeter Institute, Quantum Gravity Seminar May 2, 2019
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lodel: projection on truncation

Evaluation of FRGE already orders terms by trace structure (single-, multitrace operators
= simplest case: msert “constant” matrix in each trace summand ., = ¢6.,, 0(N — a)
This rule distinguishes between all index-independent (i.e. I/(N) symmetric) operators
(1t can be regarded as the first term for a projection rule with
index -dependent terms, e.g. by inserting orthogonal polynomials
May = &4; wij(a, b)O(N — a)O(N — b)

however: spectral sums quickly become very complicated)

Perimeter Institute, Quantum Gravity Seminar May 2, 2019
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lodel: FRGE results (w/o symmetry)

l..ii '_
runcation: '~V = o " M?) Z ST (M) with dimensionless couplingsg, = 73 N:~' o NE4eN

= beta functions: 7 = g, [ R P*|

af R e W , 1\ plt SLmy - Zg 1 e
B(g2n) = ((1 +n)n ])02::*2”-7 . TZ (—1)=™[RP ™ ( MyMs... H a(i+1)
W)  my=n i

Finding fixed points with one relevant direction, but ¢ = 1.0, .... 1.1 instead of analytic 0 — 0.8 (in all nuncations)
(and all other crit. exponents near negative integers and al1gncd with g,, : n > 4)

2. Multitrace truncation: only Tr(A/%)Tr(A/%) flow into single-trace operators at large N

= include g, , and g, , in truncation, but critical exponents actually get worse:

6, =1.21, 0, = —0.69, 0; = —1.01, 0, = —1.88

(inclusion of further multitrace operators does not improve result)

Perimeter Institute, Quantum Gravity Seminar May 2, 2019
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enerated by A7 — 0T MO = ¢ + ¢ [M, A] + O(¢?)

CQzZCJ

r2 M) + Ry
Observation: Tadpole approximation of flowing WTT vanishes
(1.e. no index dependence of tadpoles of index-independent operators!)

and leads to Ward-identity W,\-I‘,\-[M]_gt.l‘,\r[‘\l]ln-f,,,( 4, Bn] ):()

1. Tadpole approximation of single trace truncation

U 231 &€ H(Ui‘-ﬂ) - ((” I) t "”]).U‘Bn 2nx J2(n 1)

= findo, = 1 (1s 20% off, but all further multicritical exponents with good accuracy )

2. Tadpole approximation with multirace operators

including multitrace operators g, , g,, . €,,, &, ,,, I truncation gives arbitrarily close values tof, =

J

|

and multicritical exponents also m O¢7%) precision

Perimeter Institute, Quantum Gravity Seminar May 2, 2019
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“odel: Setup analogous to Matrix Model

Theory space: U(N)? symmetry = colored bipartite graphs Z O=—="“—@

Invented Laplacian: A 7w = (a + b+ ¢) Type

3N , 3N
Regulator: Ry(a,b,c) =2 (Aj— ~ ]) 0 (1 - Ai—_d)
a+b+c a+b+c

Now: Spectral sums become significantly more complicated! &

Interactions: e Ny
(dual to gluing A —x /\
of triangulations) ) \\ ! = /
» ~© P e
il //‘/\ (counting of faces)
Fd \ o
= l ‘ i /J
b I

Perimeter Institute, Quantum Gravity Seminar May 2, 2019
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e for tensor models requires an assignment of scaling dimension for all possible operators.

These are a priori arbitrary, but:

a. Almost all assignments do prevent a I/N expansion for all beta functions

b. Many of the remaining assignments collapse to Gaussian model n large N-limit

c¢. One can always remove an overall scaling of the fields by a redefinition of the integration
arlable  =>  One can always choose a Gaussian term to be dimensionless

=>  Seed of the construction is the scaling of an interaction term

By plugging an ansatz into the vertex expansion of the FRGE, one can show directly whether it admits a

I/N expansion

Example: pure, complex rank 3 U(N)"3-symmetric model: _
Model 1s non-trivial for scaling s(4-melon)=2 é
With this seen one finds for all melons that
e o ;
s(7) =3 = 503p(y) = F(%))

Where p=# of pairs of tensors and F=# of faces
AND: this choice can be shown to be consistent with the 1/N expandability of all beta functions
Perimeter Institute, Quantum Gravity Seminar May 2, 2019
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odel: FRGE results (w/o symmetry)

4
r .

g N - <~ f N2 '_l'.fu--_ I . . ) . . ;
runcation:  I'w[M] = 5Tv(M7) + Z on (V™) with dimensionless couplingsg, = #Z: N

“

nx2

= beta functions: 7 = g, |7 P*|

! e [ 5 My - § Ty m;
B(g2n) = (1 +n)n = 1) gou+2n Z (_])Z' I[RPHZ' ] ( > ) ng(i+1)

Mymas...
Ay my=n

Finding fixed points with one relevant direction, but ¢ = 1.0, .... 1.1 instead of analytic ¢ — 0.8 ¢in all nuncations)
(and all other crit. exponents near negative integers and aligned with ¢, : » > 1)

2. Multitrace truncation: only Tr(A72)Tr(A7%) flow into single-trace operators at large N

= include g, , and g, , in truncation, but critical exp&hents actually get worse:

6, = 1.21, 0, = —0.69, 0; = —1.01, 0, = —1.88

(inclusion of further multitrace operators does not improve result)
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lodel: FRGE results (w/o symmetry)

4 1 Zr - s ,'_l'.’li s B .7 . " . -
runcation: F'v[M] = b} [r(A77) + Z in [r(V™")with dimensionless couplings, = 7> N3

= beta functions: 5 = g4 [1? P

) my [ -y - § T g
B(g2n) = (1 + n)n — 1) gau+2n Z (=)= [RPY ™ ( 'n%mg... ) Hﬂz(fﬂ)

iy my=n

Finding fixed points with one relevant direction, but # = 1.0, .... 1.1 instead of analytic 0 — 0.8 ¢in all runcations)
(and all other crit. exponents near negative mtegers and aligned with ¢,, : »n > 1)

Multitrace truncation: only ‘[v(A7%)Tr(A72*) flow into single-trace operators at large N

= include g, ,and g, , in truncation, but critical exponents actually get worse:

6, =121, 0, = —0.69, 0; = —1.01, §; = —1.88

(inclusion of further multitrace operators does not improve result)
9O,
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= very active research in past 9 years on colored tensor ensembles (pure models as well as tensor field theory)

Symmetric 7° truncation of rank 3 pure tensor model:

Qo O=% =
U ‘ua. ™1 . ceme
z O (=) ¢ das ‘i rr + Az + Aca3 " T— & Aoy g e 4
& O @O—:+—0 ' '®)
O"\“. O':’-‘. O 8
-l DBt el bl T 'Y
“cbl : 3 /62 A &3 Sx63 Jebl . OD_‘. Avb2 .L O . wf . O .
O“ . O . XN
o, TV g ooy
| | & 5’

Q N - _

+ A . O + Agee O =\ _—7. + Jat1 + Ase2 + Ase3
O ¢ O__ ot _'. ‘ ' b .— P&—-—O ‘ CE
® O===@  O=2=@  O="=@
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[here exists a 1/N expansion of amplitude in colored tensor models (analogous to matrix mod SlEsES
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odel: Overview of fixed points

One finds a ton of fixed points in various models and truncations:

o

1. Types of models investigated:
1. pure tensor models (real O(N)”*3, complex U(N)”*3) up to T”8 truncation
1. Tensor ficld theory
ni. 1+1 fohation (Benedetti-Henson model)

b.  Types of fixed points:
1. with enhanced symmetry (O(N)”"3 becomes e.g. O(N*2)O(N))
1. truncation artifacts
. candidates for QG (no enhanced symmetry, no indication for truncation artifacts)

To be done: investigation of tensor models which implement nontrivial propagator
(1.c. a modified Ward-Identity) to investigate dually weighted tensor models, as is necessary to explore
CDT and EDT theory spaces

~
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Starting point: desire to explore continuum limit in LQG related models
= use FRGE to explore tensor models for QG

2. Matrix model results:
a. FRGE is a tool to find asymptotic safety in GW model grevious work with A Sfondrini: InMP A 26 (2011) 4009)
b.  FRGE finds double scaling limit and multicritical points in pure matrix models
¢. FRGE achieves numerical accuracy

‘o

Importance of U(N) - Ward-1dentity for numerical accuracy of critical exponents

4. Tensor model results:

a.  Setup can be applied to tensor models

b. FRGE finds various symmetry enhanced continuum limits as well as candidates without symmetry
enhancement
Future work will probably need to implement U(N) - Ward-identity to obtain accurate critical exponents
and broken Ward-1dentities (e.g. CDT and EDT models)

o]
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Thank you !
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