Title: The Functional Renormalization Group Equation as an Approach to the Continuum Limit of Tensor Models for Quantum Gravity

Speakers: Tim Koslowski

Series: Quantum Gravity

Date: May 02, 2019 - 2:30 PM

URL: http://pirsa.org/19050011

Abstract: Tensor Models provide one of the calculationally simplest approaches to defining a partition function for random discrete geometries. The continuum limit of these discrete models then provides a background-independent construction of a partition function of continuum geometry, which are candadates for quantum gravity. The blue-print for this approach is provided by the matrix model approach to two-dimensional quantum gravity. The past ten years have seen a lot of progress using (un)colored tensor models to describe state sums if discrete geometries in more than two dimensions. However, so far one has not yet been able to find a continuum limit of these models that corresponds geometries with more than two continuum dimensions. This problem can be studied systematically using exact renormalization group techniques. In this talk I will report on joint work with Astrid Eichhorn, Antonio Perreira, Joseph Ben Geloun, Daniele Oriti, Johannes Lumma, Alicia Castro and Victor Mu\~noz in this direction. In a separate part of the talk I will explain that the renormalization group is not only a tool to help investigating the continuum limit, but that it in fact also provides a stand-alone approach to quantum gravity. In particular, I will show how scaling relations follow from cylidrical consistency relations.

Each approach has built-in *features* and inherent *difficulties* \Rightarrow

Combine approaches to use built-in feature of one to solve difficulty of another approach

his talk

- 1. Matrix- and Colored Tensor Models (motivation from QG)
- 2. Functional Renormalization Group (general setup and the role of symmetry)
- 3. Matrix Model (specific setup, results, numerical importance of Ward identities)
- 4. Colored Tensor Models (foundations and results)
- 5. Summary

based on work with A. Eichhorn: Phys.Rev. D88 (2013) 084016, Phys.Rev. D90 (2014) no.10, 104039 Ann.Inst.II.Poincare Comb.Phys.Interact. 5 (2018) no.2, 173-210 Universe 5 (2019) no.2, 53 (with A. Pereira, J. Lumma) as well as arXiv:1811.00814 AND: Phys.Rev. D97 (2018) no.12, 126018 (with J. Ben Geloun, A. Pereira, D.Oriti) As well as unpublished work with A. Pereira, A. Eichhorn, J. Lumma, A. Castro and V. Muñoz.

on: (contd.)

we want to take the continuum limit $a \to 0$ of the tesselation by squares at fixed volume $\langle V \rangle = a_o^d \langle N_d \rangle$

 \Rightarrow take matrix size N to infinity \Rightarrow G vanishes!

 \Rightarrow For finite G we need a critical scaling of g(N) with matrix size N in continuum limit.

 \Rightarrow to investigate the continuum limit of gravity on a random lattice we need to investigate the double scaling limit of the matrix model partition function

$$Z = \int [dM]_N \exp(-S[M]) = \sum_{\gamma} A(\gamma) = \sum_{\Delta(\gamma)} e^{-(-\ln(A(\gamma)))}$$

lodels as a blueprint

te Euclidean lattice quantum gravity partition function

$$Z = \lim_{\Lambda \to \infty} \int [dg/\sim]_{\Lambda} e^{-\int \Sigma \left(\frac{R}{16\pi G} - \Lambda\right)\sqrt{|g|}} \quad \to \ \lim_{a \to 0} \sum_{\Delta} e^{-\frac{N_0 - \frac{1}{2}N_2}{8G} + (\ldots)a^2 N_0}$$

by evaluating the Hermitian random matrix model partition function with e.g.

$$Z = \lim_{N \to \infty} \int [dM_{ij}]_{N \times N} e^{-S_{matrix}(M)} \qquad \qquad S_{matrix} = \frac{1}{2} \operatorname{Tr}(M.M) + \frac{g}{\sqrt{N}} \operatorname{Tr}(M.M.M)$$

using the identification of the matrix model amplitude $N^{\chi(\Sigma)}g^{N_2} = e^{-S_{lattice}}$ with lattice Boltzmann factor

in the large N limit \Rightarrow investigate critical behavior $N \rightarrow \infty$ (see e.g. Brezin, Zinn-Justin: PLB 288 (1992) 54; C. Ayala: PLB 311 (1993) 55)

Analytic results (benchmarks for RG methods):

- 1. Existence of a critical QG theory **double scaling limit** (one critical exponent: $\theta := N \partial_N \beta(g)|_{g=g_*} = \frac{4}{5}$)
- Existence of a tower of multicritical points (have interpretation of gravity coupled to matter, e.g. a hard dimer)

Definition of a Measure with symmetries

Wathematicany. We want to find non-Gaussian measures for tensor models with a desired symmetry (e.g. $ON(N)^{^{CQZCJ}}$ which exist in the large N limit

Basic tool: *Cylindrical consistency*. I.e. an infinite-dimensional cylindrical measure induces a measure for all functions on finite dimensional (cylindrical) subspaces.

These induced measures are not independent, but satisfy consistency relations:

$$\int_{U,V} d\mu(u,v) f_{U,V}(u) = \int_{U} d\mu(u) f_{U}(u) \quad \text{for all f(u) that just depend on } U$$

Remarkably, one can define a cylindrical measure (e.g. LQG) through a set of cylindrically consistent measures.

Logical program:

- 1. Identify cylindrical consistency relations as integration over complementary subspaces
- 2. Turn the integration over complementary subspace into an interpolation by integrating over a Gaussian suppression factor => Polchinski-type flow equation
- 3. Legendre transform of Polchinski-type equation gives a Wetterich-type equation (FRGE)

Definition of a Measure with symmetries

Wathematicany. We want to find non-Gaussian measures for tensor models with a desired symmetry (e.g. $ON(N)^{\times 3}$) which exist in the large N limit

Basic tool: *Cylindrical consistency*. I.e. an infinite-dimensional cylindrical measure induces a measure for all functions on finite dimensional (cylindrical) subspaces.

These induced measures are not independent, but satisfy consistency relations:

$$\int_{U,V} d\mu(u,v) f_{U,V}(u) = \int_{U} d\mu(u) f_{U}(u) \quad \text{for all f(u) that just depend on } U$$

Remarkably, one can define a cylindrical measure (e.g. LQG) through a set of cylindrically consistent measures.

Logical program:

- 1. Identify cylindrical consistency relations as integration over complementary subspaces
- 2. Turn the integration over complementary subspace into an interpolation by integrating over a Gaussian suppression factor => Polchinski-type flow equation
- 3. Legendre transform of Polchinski-type equation gives a Wetterich-type equation (FRGE)

al Renormalization Group Equation

$$\mathbf{P}_{\mathbf{k}^{[J]}} = \int [d\phi]_{A} e^{-S_{0}[\phi] - \frac{1}{2}\phi - R_{k}.\phi + J.\phi} \Rightarrow \text{ field vacuum expectation value } \phi = \frac{\delta W_{k}}{\delta J}$$
with an IR suppression term $\frac{1}{2}\phi \cdot R_{k}.\phi$ (scale-dependent "mass" term of order k for IR d.o.f.)
effective average action $\Gamma_{k}[\phi] = (\phi \cdot J_{k}[\phi] - W_{k}[J_{k}[\phi]]) - \frac{1}{2}\phi \cdot R_{k}.\phi$
obeys a flow equation $\partial_{k} \Gamma_{k} = \frac{1}{2} \text{Tr} \left(\partial_{k} R_{k} \left(\frac{\delta^{2} \Gamma_{k}[\phi]}{\delta \phi \phi} + R_{k} \right)^{-1} \right)$
(see e.g. Wetterich *Phys. Lett. B.* 301:90)
Interpretation:
1. UV limit: saddle point around $\frac{1}{2}\phi \cdot R_{k}.\phi$ gives $\Gamma_{k\to A\to\infty}[\phi] \to S_{o}[\phi]$
2. IR limit: suppression term drops out $\Gamma_{k\to 0}[\phi] \to \Gamma[\phi]$
 \Rightarrow interpolation between bare action and quantum effective action
 \Rightarrow tool for systematic investigation of bare actions (limits $k \to \Lambda \to \infty$)
Perimeter Institute, *Quantum Gravity Seminar* May 2, 2019

ts: Regulator and Theory space

for the systematic investigation of:

- 1. possible UV actions (fundamental theories)
- 2. generic IR behaviour (universality)

Ð,

It requires only:

- 1. notion of scale separation (encoded in *IR suppression* term $\frac{1}{2}\phi R_k \phi$)
- 2. "theory space" of admissible action functionals (field content and symmetries of bare action)
- and in practical calculations a *truncation* ansatz and *projection* onto truncation (i.e. understanding which effective operators are most important and a how to find these operators on RHS of FRGE)

however: IR suppression term is often required to break symmetry of the bare action

 \Rightarrow flowing Ward identities

Perimeter Institute, Quantum Gravity Seminar May 2, 2019

COZCJ

Vard Identities

ace of the bare action under a symmetry generated by $\mathcal{G}_{\epsilon} S[\phi] = \epsilon^{B} \frac{\delta S[\phi]}{\delta \phi^{A}} f^{A}_{B}[\phi]$

(for simplicity assume invariance of the measure $[d\phi]_{\Lambda}$ under this symmetry)

 $\Rightarrow \text{Legendre transform yields } \mathcal{W}_{k} = \mathcal{G}_{\epsilon}\Gamma_{k} - \frac{1}{2}\mathcal{G}_{\epsilon}\left(\langle \phi.R_{k}.\phi \rangle - \phi.R_{k}.\phi \rangle\right)$

Which ensures that the effective action satisfies the correct Ward identity $\lim_{k\to 0} W_k \Gamma_k = W\Gamma = 0$

Moreover: analogous to derivation of FRGE one finds

$$\partial_k \mathcal{W}_k \Gamma_k = -\frac{1}{2} \operatorname{Tr} \left((\Gamma_k^{(2)} + R_k)^{-1} \cdot \partial_k R_k \cdot (\Gamma_k^{(2)} + R_k) \cdot (\mathcal{W}_k \Gamma_k)^{(2)} \right)$$

⇒ if initial effective average action satisfies initial W™ then the effective action satisfies the normal WTI

 \Rightarrow symmetry improved flow by solving mWTI and using symmetric couplings as coordinates on $W_k\Gamma_k = 0$ Perimeter Institute, *Quantum Gravity Seminar* May 2, 2019

[odel Theory Space and Regulator

del action $S_{matrix} = \frac{1}{2} \text{Tr}(M.M) + \frac{g}{\sqrt{N}} \text{Tr}(M.M.M)$ generates complicated odd theory space cozcu

 \Rightarrow simpler to use even theory space with even action $S_{matrix} = \frac{1}{2} \operatorname{Tr}(M.M^T) + \frac{g}{N} \operatorname{Tr}(M.M^T.M.M^T)$ with real M

symmetry under bi-orthogonal transformations $M \rightarrow O_1.M.O_2^T$

 \Rightarrow generates even effective operators (i.e. of form $Tr(M^{2n_1})...Tr(M^{2n_k})$)

 \Rightarrow theory space $\Gamma_k[M] = f_k(\operatorname{Tr}(M^2), \operatorname{Tr}(M^4), \operatorname{Tr}(M^6), ...)$ has no occurrence of scale

 \Rightarrow need to "*invent* a Laplacian" that says which d.o.f. are IR, e.g. $\Delta M_{ab} := (a + b) M_{ab}$

A useful regulator is (analogous to Litim's optimized profile):

 $\Delta_N S[M] = M_{ab} R_N(a, b) M_{ab} \quad \text{with} \quad R_N(a, b) = Z \left(\frac{2N}{a+b} - 1\right) \theta \left(1 - \frac{2N}{a+b}\right)$

Perimeter Institute, Quantum Gravity Seminar May 2, 2019

This invention breaks U(N)resp. $O(N)^2$ symmetry !

Iodel: Dimension from 1/N expandability

CQZC

cal dimension" of operators in this theory space, but since we are interested in the large N limit

we have to impose that the beta functions admit a 1/N expansion, i.e. $\beta_{g_i} = b_i^1(g_1, ...) + 1/N b_i^2(g_1, ...) + O(1/N^2)$

this fixes the scaling of the operators, by generating upper and lower bounds that admit only one solution at the end.

E.g. tadpole of one $g_4 Tr(M^4)^{(2)}$ flows into Z

and two-vertex diagram with two $g_4 Tr(M^4)^{(2)}$ flows into g_4

 \Rightarrow dimension of g_4 is fixed; analogously all other operators.

 \Rightarrow for couplings defined as $\Gamma_N[M] = \sum g_{n_1...n_i}^i \operatorname{Tr}(M^{2n_1})...\operatorname{Tr}(M^{2n_i})$

one obtains the canonical dimension from 1/N expandability as

$$\dim(g_{n_1...n_i}^i) = N^{i-1+\sum_{k=1}^i n_k}$$

[odel: projection on truncation

Evaluation of FRGE already orders terms by trace structure (single-, multitrace operators)

 \Rightarrow simplest case: insert "constant" matrix in each trace summand $M_{ab} = \phi \, \delta_{ab} \, \theta(N-a)$

This rule distinguishes between all index-independent (i.e. U(N) symmetric) operators

(it can be regarded as the first term for a projection rule with

index -dependent terms, e.g. by inserting orthogonal polynomials

 $M_{ab} = \phi_{ij} u_{ij}(a, b)\theta(N - a)\theta(N - b)$

however: spectral sums quickly become very complicated)

Iodel: FRGE results (w/o symmetry)

trun

cation:
$$\Gamma_N[M] = \frac{Z}{2} \operatorname{Tr}(M^2) + \sum_{n \ge 2} \frac{\bar{g}_{2n}}{2n} \operatorname{Tr}(M^{2n})$$
 with dimensionless couplings $\bar{g}_i = Z^{\frac{i}{2}} N^{\frac{i}{2}-1} g_i$ COZC

 \Rightarrow beta functions: $\eta = g_4 [\dot{R} P^2]$

$$\beta(g_{2n}) = \left((1+\eta)n - 1\right)g_{2n} + 2n\sum_{i;\vec{m}:\sum m_k = n} (-1)^{\sum_i m_i} [\dot{R}P^{1+\sum_i m_i}] \left(\sum_{m_1 m_2 \dots} \right) \prod_i g_{2(i+1)}^{m_i}$$

Finding fixed points with one relevant direction, but $\theta \approx 1.0, ..., 1.1$ instead of analytic $\theta = 0.8$ (in all truncations) (and all other crit. exponents near negative integers and aligned with g_{2n} : n > 4)

2. Multitrace truncation: only $Tr(M^2)Tr(M^{2n})$ flow into single-trace operators at large N

 \Rightarrow include $g_{2,2}$ and $g_{2,4}$ in truncation, but critical exponents actually get worse:

 $\theta_1 = 1.21, \ \theta_2 = -0.69, \ \theta_3 = -1.01, \ \theta_4 = -1.88$

(inclusion of further multitrace operators does not improve result)

[odel: FRGE results (with symmetry)

generated by $M \to O^T . M . O = \phi + \epsilon [M, A] + O(\epsilon^2)$

and leads to Ward-identity $\mathcal{W}_N \Gamma_N[M] = \mathcal{G}_{\epsilon} \Gamma_N[M] - \operatorname{tr}_{op} \left(\frac{[A, R_N]}{\Gamma_N^{[2]}[M] + R_N} \right) = 0$

Observation: Tadpole approximation of flowing WTI vanishes (i.e. no index dependence of tadpoles of index-independent operators!)

1. Tadpole approximation of single trace truncation

 $\eta = 2g_4 x \qquad \qquad \beta(g_{2n}) = ((n-1) + n\eta)g_{2n} - 2n x g_{2(n+1)}$

 \Rightarrow find $\theta_1 = 1$ (is 20% off, but all further multicritical exponents with good accuracy)

2. Tadpole approximation with multirace operators

including multitrace operators g_{2n} , $g_{2,2n}$, $g_{4,2n}$, $g_{2,2,2n}$ in truncation gives arbitrarily close values t $\theta_1 = \frac{4}{5}$

and multicritical exponents also in O(1%) precision

odel: Setup analogous to Matrix Model

Theory space: $U(N)^3$ symmetry \Rightarrow colored bipartite graphs $z \bigcirc q_1 = 0$

Invented Laplacian: $\Delta T_{abc} = (a + b + c) T_{abc}$

Regulator:
$$R_N(a, b, c) = Z\left(\frac{3N}{a+b+c} - 1\right)\theta\left(1 - \frac{3N}{a+b+c}\right)$$

Now: Spectral sums become significantly more complicated!

odel: Dimension from 1/N expandability

These are a priori arbitrary, but:

- a. Almost all assignments do prevent a 1/N expansion for all beta functions
- b. Many of the remaining assignments collapse to Gaussian model in large N-limit
- c. One can always remove an overall scaling of the fields by a redefinition of the integration
 - variable => One can always choose a Gaussian term to be dimensionless
 - => Seed of the construction is the scaling of an interaction term
- By plugging an ansatz into the vertex expansion of the FRGE, one can show directly whether it admits a 1/N expansion
- Example: pure, complex rank 3 U(N)³-symmetric model: Model is non-trivial for scaling s(4-melon)=2

With this seen one finds for all melons that

$$s(\gamma) = 3 - \frac{1}{2}(3p(\gamma) - F(\gamma))$$

Where p=# of pairs of tensors and F=# of faces

AND: this choice can be shown to be consistent with the 1/N expandability of all beta functions

[odel: FRGE results (w/o symmetry)

trunc

ation:
$$\Gamma_N[M] = \frac{Z}{2} \operatorname{Tr}(M^2) + \sum_{n \ge 2} \frac{\bar{g}_{2n}}{2n} \operatorname{Tr}(M^{2n})$$
 with dimensionless couplings $\bar{g}_i = Z^{\frac{i}{2}} N^{\frac{i}{2}-1} g_i$ CQZC

 \Rightarrow beta functions: $\eta = g_4 [\dot{R} P^2]$

$$\beta(g_{2n}) = \left((1+\eta)n - 1\right)g_{2n} + 2n\sum_{i;\vec{m}:\sum m_k = n} (-1)^{\sum_i m_i} [\dot{R}P^{1+\sum_i m_i}] \left(\sum_{m_1 m_2 \dots} \right) \prod_i g_{2(i+1)}^{m_i}$$

Finding fixed points with one relevant direction, but $\theta \approx 1.0, ..., 1.1$ instead of analytic $\theta - 0.8$ (in all truncations) (and all other crit. exponents near negative integers and aligned with g_{2n} : n > 4)

2. Multitrace truncation: only $Tr(M^2)Tr(M^{2n})$ flow into single-trace operators at large N

 \Rightarrow include $g_{2,2}$ and $g_{2,4}$ in truncation, but critical exp@nents actually get worse:

 $\theta_1 = 1.21, \ \theta_2 = -0.69, \ \theta_3 = -1.01, \ \theta_4 = -1.88$

(inclusion of further multitrace operators does not improve result)

Iodel: FRGE results (w/o symmetry)

truncation: $\Gamma_N[M] = \frac{Z}{2} \operatorname{Tr}(M^2) + \sum_{n \ge 2} \frac{\bar{g}_{2n}}{2n} \operatorname{Tr}(M^{2n})$ with dimensionless couplings $\bar{g}_i = Z^{\frac{i}{2}} N^{\frac{i}{2}-1} g_i$ COZCJ

 \Rightarrow beta functions: $\eta = g_4 \left[\dot{R} P^2 \right]$

$$\beta(g_{2n}) = \left((1+\eta)n - 1\right)g_{2n} + 2n\sum_{i;\vec{m}:\sum m_k = n} (-1)^{\sum_i m_i} [\dot{R}P^{1+\sum_i m_i}] \left(\sum_{m_1 m_2 \dots} \right) \prod_i g_{2(i+1)}^{m_i}$$

Finding fixed points with one relevant direction, but $\theta \approx 1.0, ..., 1.1$ instead of analytic $\theta - 0.8$ (in all truncations) (and all other crit. exponents near negative integers and aligned with g_{2n} : n > 4)

2. Multitrace truncation: only $Tr(M^2)Tr(M^{2n})$ flow into single-trace operators at large N

 \Rightarrow include $g_{2,2}$ and $g_{2,4}$ in truncation, but critical exponents actually get *worse*:

 $\theta_1 = 1.21, \ \theta_2 = -0.69, \ \theta_3 = -1.01, \ \theta_4 = -1.88$

(inclusion of further multitrace operators does not improve result)

0.

Odel: Beta functions (for T^6-truncation) $+ g_{4,1}^{2,3} + g_{4,2}^2$ (5 - η)
$\sum_{\substack{\beta_{g_{4,1}^{2,i}} = (2+2\eta)g_{4,1} + (g_{4,1}^{2,i})^2 \frac{13}{630}(21-4\eta) - g_{6,1}^{3,1}\frac{5-\eta}{15} - g_{6,2}^{3,1}\frac{5-\eta}{40}} $
$\beta_{g_{4,2}^2} = (3+2\eta)g_{4,2}^2 + \frac{6-\eta}{15} \Big(\left(g_{4,2}^2\right)^2 + 2g_{4,2}^2 \left(g_{4,1}^{2,1} + g_{4,1}^{2,2} + g_{4,1}^{2,3}\right) + \frac{6-\eta}{15} \Big) \Big(\left(g_{4,2}^2\right)^2 + 2g_{4,2}^2 \left(g_{4,1}^{2,1} + g_{4,1}^{2,2} + g_{4,1}^{2,3}\right) \Big) \Big) \Big) + \frac{6-\eta}{15} \Big(\left(g_{4,2}^2\right)^2 + 2g_{4,2}^2 \left(g_{4,1}^{2,1} + g_{4,1}^{2,2} + g_{4,1}^{2,3}\right) \Big) \Big) \Big) + \frac{6-\eta}{15} \Big) $
$2g_{4,1}^{2,1}g_{4,1}^{2,2} + 2g_{4,1}^{2,1}g_{4,1}^{2,3} + 2g_{4,1}^{2,2}g_{4,1}^{2,3}\Big) - \frac{5-\eta}{20}\left(g_{6,2}^{3,1} + g_{6,2}^{3,2} + g_{6,2}^{3,3}\right)$
$ \beta_{g_{6,1}^{3,1}} = (4+3\eta) g_{6,1}^{3,1} + \frac{13}{210} (21-4\eta) g_{4,1}^{2,1} g_{6,1}^{3,1} - 8 (g_{4,1}^{2,1})^3 \frac{5769 - 1049\eta}{60480} \\ \beta_{g_{6,1}^{2,1}} = (5+3\eta) g_{6,1}^{2,1} - g_{4,1}^{2,1} g_{4,2}^{2,2} g_{4,1}^{2,3} 16 \frac{93869 - 15729\eta}{362880} - \left(g_{4,1}^{2,2} (g_{4,1}^{2,3})^2 + g_{4,1}^{2,3} (g_{4,1}^{2,2})^2\right) 8 \frac{46500 - 8887\eta}{151200} + \frac{1000}{151200} + \frac{1000}{1500} + \frac{1000}{1$
$ \left(g_{4,1}^{2,2}g_{6,1}^{3,3} + g_{4,1}^{2,3}g_{6,1}^{3,2}\right) 13 \frac{21 - 4\eta}{210} + \left(g_{4,1}^{2,2} + g_{4,1}^{2,3}\right) g_{6,1}^{2,1} 13 \frac{21 - 4\eta}{630} \\ \frac{72160}{72160} = 12880 \text{m} N^{-d^{\bar{g}}_{6,1}^{0}} $
$\beta_{g_{6,1}^0} = \left(-d_{g_{6,1}^0} + 3\eta\right) g_{6,1}^0 - g_{4,1}^{2,1} g_{4,1}^{2,2} g_{4,1}^{2,3} 16 \frac{73160 - 13889\eta}{604800} \frac{N^{-6}}{N^6} \right)$
$\beta_{g_{6,2}^{3,1}} = (5+3\eta) g_{6,2}^{3,1} + \left(g_{4,1}^{2,2} + g_{4,1}^{2,3}\right) g_{6,1}^{3,1} \frac{6-\eta}{5} - \left(g_{4,1}^{2,1}\right)^2 \left(g_{4,1}^{2,2} + g_{4,1}^{2,3}\right) 8 \frac{2764 - 467\eta}{5000} + \frac{10000}{5000} + \frac{10000}{50000} + \frac{10000}{500000} + \frac{10000}{50000000000000000000000000000000$
$\left(g_{4,1}^{2,2} + g_{4,1}^{2,3}\right)g_{6,2}^{3,1}\frac{6-\eta}{15} + g_{6,1}^{3,1}g_{4,2}^{2}\frac{6-\eta}{5} + g_{6,2}^{3,1}g_{4,2}^{2}\frac{6-\eta}{15} + g_{6,2}^{3,1}g_{4,1}^{2,1}\frac{399-73\eta}{315}$
$\beta_{g_{6,3}^3} = (6+3\eta) g_{6,3}^3 + \left(g_{4,1}^{2,2} \left[g_{6,2}^{3,1} + g_{6,2}^{3,3} \right] + g_{4,1}^{2,1} \left[g_{6,2}^{3,2} + g_{6,2}^{3,3} \right] \right)$
$+g_{4,1}^{2,3}\left[g_{6,2}^{3,1}+g_{6,2}^{3,2}\right]\right)\frac{6-\eta}{-15}2+g_{6,3}^{3}\left(g_{4,1}^{2,1}+g_{4,1}^{2,2}+g_{4,1}^{2,3}\right)\frac{6-\eta}{5}-g_{4,1}^{2,1}g_{4,1}^{2,2}g_{4,1}^{2,3}\frac{7-\eta}{84}16+$
$g_{4,2}^2 g_{6,3}^3 \frac{6-\eta}{5} - 8 \left(g_{4,2}^2\right)^3 \frac{7-\eta}{84} - \left(g_{4,2}^2\right)^2 \left(g_{4,1}^{2,1} + g_{4,1}^{2,2} + g_{4,1}^{2,3}\right) 2 \frac{7-\eta}{7} - \left(g_{4,1}^{2,1} \left[g_{4,1}^{2,2} + g_{4,1}^{2,3}\right] + g_{4,2}^{2,2} g_{4,1}^{2,3}\right) g_{4,2}^2 2 \frac{7-\eta}{7} - \left(g_{4,1}^{2,1} \left[g_{4,1}^{2,2} + g_{4,1}^{2,3}\right] + g_{4,2}^{2,2} g_{4,1}^{2,3}\right) g_{4,2}^2 2 \frac{7-\eta}{7} - \left(g_{4,1}^{2,1} \left[g_{4,1}^{2,2} + g_{4,1}^{2,3}\right] + g_{4,2}^{2,2} g_{4,1}^{2,3}\right) g_{4,2}^2 2 \frac{7-\eta}{7} - \left(g_{4,1}^{2,2} \left[g_{4,1}^{2,2} + g_{4,1}^{2,3}\right] + g_{4,2}^{2,2} g_{4,1}^{2,3}\right) g_{4,2}^2 2 \frac{7-\eta}{7} - \left(g_{4,2}^{2,2} + g_{4,1}^{2,3}\right) g_{4,2}^2 2 \frac{7-\eta}{7} - \left(g_{4,2}^{2,2} + g_{4,2}^{2,3}\right) g_{4,2}^2 2 \frac{7-\eta}{7} - \left(g_{4,2}^{2,2} + g_{4,2}^{$
Perimeter Institute, Quantum Gravity Seminar May 2, 2019

odel: Overview of fixed points

One finds a ton of fixed points in various models and truncations:

- a. Types of models investigated:
 - i. pure tensor models (real O(N)^3, complex U(N)^3) up to T^8 truncation
 - ii. Tensor field theory
 - iii. 1+1 foliation (Benedetti-Henson model)
- b. Types of fixed points:
 - i. with enhanced symmetry $(O(N)^3$ becomes e.g. $O(N^2)O(N)$)
 - ii. truncation artifacts
 - iii. candidates for QG (no enhanced symmetry, no indication for truncation artifacts)
- c. To be done: investigation of tensor models which implement nontrivial propagator (i.e. a modified Ward-Identity) to investigate dually weighted tensor models, as is necessary to explore CDT and EDT theory spaces

- 1. Starting point: desire to explore continuum limit in LQG related models
 - \Rightarrow use FRGE to explore tensor models for QG
- 2. Matrix model results:
 - a. FRGE is a tool to find asymptotic safety in GW model (previous work with A. Sfondrini: IJMP A 26 (2011) 4009)
 - b. FRGE finds double scaling limit and multicritical points in pure matrix models
 - c. FRGE achieves numerical accuracy
- 3. Importance of U(N) Ward-identity for numerical accuracy of critical exponents
- 4. Tensor model results:
 - a. Setup can be applied to tensor models
 - FRGE finds various symmetry enhanced continuum limits as well as candidates without symmetry enhancement
 - c. Future work will probably need to implement U(N) Ward-identity to obtain accurate critical exponents and broken Ward-identities (e.g. CDT and EDT models)

