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Abstract: We study the eigenstate properties of a nonintegrable spin chain that was recently realized experimentaly in a Rydberg-atom quantum
simulator. In the experiment, long-lived coherent many-body oscillations were observed only when the system was initialized in a particular product
state. This pronounced coherence has been attributed to the presence of special "scarred" eigenstates with nearly equally-spaced energies and
putative nonergodic properties despite their finite energy density. In this paper we uncover a surprising connection between these scarred eigenstates
and low-lying quasiparticle excitations of the spin chain. In particular, we show that these eigenstates can be accurately captured by a set of
variational states containing a macroscopic number of magnons with momentum €. This leads to an interpretation of the scarred eigenstates as
finite-energy-density condensates of weakly interacting 1€-magnons. One natural consequence of this interpretation is that the scarred eigenstates
possess long-range order in both space and time, providing a rare example of the spontaneous breaking of continuous time-translation symmetry.
We verify numerically the presence of this space-time crystalline order and explain how it is consistent with established no-go theorems precluding
its existence in ground states and at thermal equilibrium.
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Quanturn many-body scars and
space-time crystalline order from
magnon condensation

Thomas ladecola

Perimeter Institute
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Quantum dynamics

Fundamental: Many-body physics beyond ground states

Many new experiments, important questions for
quantum info:

When and how is quantum information lost?
How can it be retained?

Quantum many-body scars

A new regime of non-ergodic quantum dynamics?

hitp://103020191 924 &
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Quantum ergodicity

Isolated sytem: “quantum quench”

7

"Ergodic” dynamics: relaxes to g locally thermal state
regardless of the initial condition

hitp://103020191 9904 &
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Quantum ergodicity

Key metric: entanglement entropy

Sa=—trpalnpy

ETH prediction:

pA ~ e’ i

ﬂ (if B < 00)
DA S el V()I(A)

(i.e., thermal entropy is extensive
at finite temperature)
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Quantum ergodicity

Key metric: entanglement entropy

Sa=—trpalnpy

: Mid-spectrum states:
Sa ~ VOI(A) N, infinite temperature”

“volume law”

http://103020191 9224 &
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Quantum ergodicity

Key metric: entanglement entropy

Sa=—trpalnpy

Sa ~ Vol(0A)
“area law”
(T = 0F)

Ex: gapped ground states of 1D systems, S4 ~ const.

Hastings, JSTAT P08024 (2007)

http://103020191 9224 &
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ETH: Every eigenstate is “thermal,”
all finite-energy-density eigenstates
are “volume-law”

Appears to be quite common for
sufficiently “generic” many-body
Hamiltonians

Are there exceptions to this “rule?”

Yes! Many-body localization (MBL):
All states are area-law!

Page 8/43



What is MBL?

Starting point: Anderson localization (single particle)

Fa
J : hopping

W disorder
strength

In 1D, for any finite W':
All eigenstates are localized

Anderson, Phys. Rev. 109, 1492 (1958)

http://103020191 9224 &
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What is MBL?

Now add interaction A (for hardcore bosons):

Persists at finite A
when A, J <€ W

Basko, Aleiner, and Altshuler,
Ann. Phys, 321, 1126 (20086),
Gornyi, Mirlin, and Polyakov,
PRL 85, 206603 (2005);
Pal and Huse, PRB 82, 174411 (2010)

Current perspective:
complete set of emergent local conserved quantities
[H, 7] =0, [ns,0;] =0

|E) = {7 }is1)
G Rii=]
Serbyn, Papi¢, and Abanin, PRL 111, 127201 (2013)

Husa, Nandkishora, and Oganesyan, PRB 80, 174202 (2014);
Swingle, arXiv:1307.0507

http://103020191 9224 &
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Consequences: MBL phenomenology
[ =0, |5, 7] =0 j2 = ln e

e All eigenstates have area-law entanglement S4 ~ const.

Bauer and Nayak, JSTAT PO9005 (2013)

* Dynamics: Retains memory 3 U=4.701) :

e e i A
of initial state (nonergodicity) — °® MUBS v

0.6

EXe |\|J(]> = |o ceo., ) disorder strength

(or any local density product state) A/J=3

N
[4}]
Q
| =
S 0.4
1)
Q0
Eo

n

o

20
Time (1)
Bloch Group, Science 349, 842 (2015)
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Localization-protected “eigenstate order”

e All eigenstates have area-law entanglement S4 ~ const.

Bauer and Nayak, JSTAT P09005 (2013)
Enables stable infinite-temperature quantum phases!

. . _ANA. AAAA
- Spontaneous symmetry breaking e e

Huse et al.,, PRB 88, 014206 (20 13_) Thermal
Kjall et al., PRL 113, 107204 (2014)
Pekker et al, PRX 4, 011052 (2014) 213F
Vasseur et al., PRB 93, 134207 (2016) MBL

pgy- o
magnetic_

——

- Symmetry-protected topological il — MBL
(SPT) Order Chandran et al., PRB 89, 144201 (2014) spin-glass

Slagle et al., arXiv:1505.05147
Potter and Vishwanath, arXiv: 1506.00592

i L
4 [ 8
a.1

Kjall et al., PRL 113, 107204 (2014)
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Pirsa: 19040131

Page 12/43



A tale of two entanglements?

Generic highly excited many-body eigenstates:

ETH systems:
Volume-law
(ergodic)

MBL systems:

Area-law
(nonergodic)

The only two possibilities?

http://103020191 9224 &
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Quantum many-body scars
“Weak ETH": “Almost all” eigenstates are thermal

: 1 ~
hIIl ( X Mlcm-thm'nm] = (

L—soo \ dim H

Biroli, Kollath, and Lauchli, PRL 105, 250401 (2010)

Generic eigenstates
follow ETH prediction

“A few” outliers
with low
entanglement

http://103020191 9224 &
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Experimental realization

Setup: 8’Rb atoms in an optical tweezer array

View as “spins”

)~ 1

g) ~ |4)
Bernien et al., Nature 551, 579 (2017) e

: : ; ()
Drivewith Q <« V; ;41 = H= 5 Z—PFIX?PH_]

Constrained-paramagnet or “PXP" model
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A dynamical PXPuzzle

Strong coherent revivals after
quench from Néel state

Z2) = 11 ..

N |
time & " s 1
ien et al., Nature 651, 579 (2017) Rydberg probability

No revivals for generic
initial product states

o
o)}

888883§288 Highly unexpec_ted! Model
“should” satisfy ETH

o
i

o 9 atoms
© 51 atoms

MPS Strong initial-state dependence:
0?4 0%8 1?2

Time after quench (us) ETEl \ EET_

(still consistent with weak ETH)

o
(N

2
(2]
c
()
©
[
S
£
(1)
€
O
(]

(=)
. »
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What are these states?
Stability to perturbations?

Mechanism for their
existence?

-10
E

Turner et al., Nat. Phys. 14, 745 (2018) — Krylov subspace description
Turner et al., Nat. Phys. 14, 745 (2018)

Turner et al., PRB 98, 155134 (2018) — ETH violation

e+ Stability

Choi et al., arXiv:1812.05561 — emergent SU(2) sym

Khemani, Laumann, and Chandran, arXiv:1807.02108 — proximity to integrability?

Lin and Motrunich, arXiv:1810.00888 — exact MPS in middle of spectrum

Surace et al., arXiv:1902.09551 — Lattice gauge theory

Ho, Choi, Pichler, and Lukin, PRL 122, 040603 (2019) — Semiclassics
Bu\l Martin, and Papi¢, arXiv:1903.10491 — role of constraints

Generalizations

http://103020191 9224 &
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Aside on stability: A useful deformation of PXP
H' = H + §Hp

R

(5[]1,{ —i— Z Z h.r(g Pi_]_X',{_P,i_—}—l (Zi—d = ZH—d)
t d=2

Suggests proximity to some “perfect point” where
revivals become exact, oscillations last forever

- o

. d—1 —(d—1 o —
ha = hg (SD( =P £ )) 154 ©F Siged.

i
= 10" -

14+ /5 %1.0—
2
BE=10

(P:

10 ! 20 30

Chol et al., arXiv:1812.05561

Khemani, Laumann, and Chandran, arXiv:1807.02108 — proximity to integrability?
Choi et al., arXiv:1812,05561 — emergent SU(2) symmetry?

http://103020191 9224 &
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Do we know of any other non-integrable
Hamiltonians with ETH-violating

eigenstates?

http://103020191 9224 &
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Exact non-thermal states in the AKLT chain

L
Spin-1 chain with L sites: H = Z p2

Affleck, Kennedy, Lieb, and Tasaki, PRL 59, 799 (1987) 4=1 \
Famous exact ground state:

S B I B B B
| e @®oe @®e )

-
o—@ = (1) - i1)/V2

Recently: a sequence of
exact excited states!

Moudgalya, Rachel, Bernevig, and Regnault, PRB 98, 235155 (2018)

N . 05 1 3 ..“\."x togmaseen—
|S-_)_N> B¢ (Z(])' (Si‘*)z) |G> Moudgalya et al., PRB 98, 235155 (2018)

)

BUT nonintegrable:

http://103020191 9224 &
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Exact non-thermal states in the AKLT chain

N .
(—1) (Sj)z) G) Exact energies:
H|San) = 2N [San)

Moudgalya et al., PRB 98, 235155 (2018)

When N/L is finite: Entanglement entropy:
Finite energy density! Ss~InN
Entanglement ~ In L' Moudgalya et al., PRB 98, 235156 (2018)

What are these states?
Spin-2

d) @ @ magnons w/

N magnons: scatterlng interferes
destructively when all magnons
have momentum 1 “m magic”

http://103020191 9224 &

Pirsa: 19040131 Page 21/43



Could something like this be going on in the PXP model?

Correct momentum
structure

Numerically obtained
entanglement ~In(L)

Can we describe the scar states
In terms of (nearly-)free magnons
with momentum 1?7

http://103020191 9224 &
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Can we describe the scar states
in terms of (nearly-)free magnons
with momentum n?

Yes.

This work:
TI, M. Schecter, and S. Xu, arXiv:1903.10517

1 1) Develop a magnon description
.| of the PXP scar states

0.2 0.4 0.6 0.8 1.0

2) Explore consequences: long-
range order in both space and time

(“eigenstate order” in
highly excited states, w/o MBL!)

http://103020191 9224 &
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Single-mode approximation for magnons

Build low-energy excitations (magnons) above GS using

L See also Bijl (1940),
_ ,—ikr Feynman (1954),
Zh - E € A! and Girvin-McDonald-

A | Platzman (1986)

http://103020191 9224 &
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1) Develop a magnon description
of the PXP scar states

0.2 0.4 0.6
ki
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Single-mode approximation for magnons

Build low-energy excitations (magnons) above GS using

See also Bijl (1940),

>
,—ikr 7 Feynman (1954),
c T and Girvin-McDonald-
Platzman (1986)

N
>
|

|

—

1Ll

‘overlap
o0

y
0.8
0.6
0.4
0.2
0.0

’
r

’

’

i
re———

[t Rl
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Single-mode approximation for magnons

Build low-energy excitations (magnons) above GS using

See also Bijl (1940),

_ ,—1kr 7 Feynman (1954),
v € r and Girvin-McDonald-
Platzman (1986)

N
=
|

-
f—

Ik
Il
I

‘overlap
g 10
0.8
0.6
0.4

0.2
0.0

—

i
e

T
01
|I

11
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Next step: Find m-magnon creation operator

Numerical search for an operator

it Dy 1oy (form constrained by

S5 (a) = 5 \ a € R symmetries)

Yr=) (-1) Pj.1Y;Pj
j
Simultaneously optimize
ST (o) |GS) ~ |first excited state)

and
(S5 (a)]T|GS) = 87 () |GS) = 0

From now on, use

=
s

http://103020191 9224 &

Pirsa: 19040131

Page 28/43



Magnon description of scar states?

Natural basis of magnon states: ) = NG (ST)RIGS)

Hamiltonian has energy-

: ; CHC=-H,C’=1
reflection symmetry:

B g
C|GS)

So we can also use the |2} = Na (
reflected states: |CS

'

S
)

Problem! {|n), |n)} is not an
orthogonal set

Use these states to make a
“caricature” of each scar state

Source: KidZone Party Rentals

http://103020191 9224 &
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Magnon description of scar states?
Define the vector space
- —spantiin in =02 &2 diml =1 +2

w/ orthonormal basis {|e;)};

Compute the weight += 1.00
dim V. % 0.95

W im = Z [(e;|m)]* < 1 0.90
i 0.85

for each scar state =0 (1.80

jm), m =0(GS),...,L+1 (CS) |z 0.75} .~

=
)
aed
=
&)
'
Q)
=

Aver

e 0.4392 + 8.653(1/L)

0,035 0.040 0.045 0.050 0.055
]1: —_— ()

and average over m

Compare to a random state: dim V, /D = 0.002676 . .. at L=26!

http://103020191 9224 &
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Magnon description of scar states?
Systematic improvements: use m-magnon scattering states

[n, 6K) = N sk (S )™~ (SN | G S )

2
>2 0k=0,—
Tl L

to build vector space Vx sk W/ dimension ~ L?

Accounts for unknown 0L = e

magnon interactions 8D () g foeeeee @ “i

m ‘l'? ‘I(‘t.l‘]Hll'(I llllﬂll'l
= 0.90f
~ ° 1 b - e

e: For deformed model, ;‘ 0.85} o v
Vr is enough!

o o

Suggests magnons interact

-
0.9764 + 0.2933(1/L)

--- ().8884 + 2.131(1/L)

0.4392 + 8.653(1/1)

more weakly as “perfect

N L 18,26 Lk

http://103020191 9224 &
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2) Explore consequences: long-
range order in both space and time

(“eigenstate order” in
highly excited states, w/o MBL!)

http://103020191 9224 &
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Magnon description of scar states?
Define the vector space

V- =span{in),|ln) n=0,...,L/2F dimV.=L+2

w/ orthonormal basis {|e;)};

Compute the weight = 1.00
=0
dim V. D 0.95¢F

Wy_(m) = Z [{e;|m)]* < 1 — 0.90

e

t=1
for each scar state
Im), m=0 (GS),...,L+1 (CS)

0.85
= 0.80
Q5| e

rage to

Ave

e 04392 4 8.653(1/ L)

gsh 040 ‘0as LOSD (E5S
k=10

and average over m

http://103020191 9224 &
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Long-range correlations in scar states

Scar states appear well-described by states of many
magnons. Does this mean they are “magnon condensates”?

Specifically, look for
“‘off-diagonal long-range
order” (ODLRO), i.e.

[ ]
~]
T~
P |
=
]

(8+8_-)/L® = const.

as L = oo

S

(m|ST

,.-..
(-
g |

(Note: ETH predicts zero!)

Finite-energy-density scar
states have finite m-magnon 0
density for both pure and L ‘1}2
deformed PXP models it R

http://103020191 9224 &

Pirsa: 19040131 Page 34/43



Long-range correlations in scar states

This translates to translation-symmetry breaking in real
space (a “magnon density wave” w/ wavenumber 1)

Note:
similar for

(Yj 7'i+'r'>(:

Can be measured

Compare ETH prediction ;
P P experimentally! Test w/

(ZiZitr)e,prn ~ (=1)"¢™", 7 =00 quench dynamics

http://103020191 9224 &
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Space-time crystalline order in scar states

What are time crystals?

Wilczek (2012): Spontaneous breaking of
PRL109. 15040112012 time-translation symmetry in ¢
ground states, analogous to "«
spatial crystal formation
Watanabe and 114, 251603 (2015)
Oshikawa (2015):

PRL 114, 251603 (2015) <(I)G(t)(l)—G(U)>/V2 = f(f) = Z gt Jv

VveZ

as V — o0

Proven to be impossible in ground states or at
thermal equilibrium

But possible in highly excited states!

http://103020191 9224 &
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Space-time crystalline order in scar states

Time crystals so far:

Floquet time crystals—break discrete time-
translation symmetry

. Sacha, PRA 91, 033617 (2015)
Theory: ihemani et al., PRL 116, 250401 (2016)
Else, Bauer, and Nayak, PRL 117, 090402 (2016)
von Keyserlingk, Khemani, and Sondhi, PRB 94, 085112 (2016)
Else, Bauer, and Nayak, PRX 7, 011026 (2017)
and many more...

Chol et al., Nature 543, 221 (2017) 3 Time

Zhang et al., Nature 543, 217 (2017)

Pal, Nishad, Mahesh, and Sreejith, PRL 120, 180602 (2018) ] CrySta]S
Rovny, Blum, and Barrett, PRL 120, 180603 (2018) 3 s i Wi o
Smits et al., PRL 121, 185301 (2018)

Rovny, Blum, and Barrett, PRB 87, 184301 (2018)

Continuous time crystals? Still controversial

Systems with ODLRO Prethermalization Argued to be impossible in non-

Wilczek, PRL 111, 250402 (2013) Else, Bauer, and Nayak, Floquet MBL systems

Volovik, JETP Lett. 98, 491 (2013 > ) : : :
‘Wamnabn and ()shikawa‘(PﬁL ) PRX7, 011026 (2017) Khemani, von Keyserlingk, and Sondbhi,

And no experiments so far

http://103020191 9224 &
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Space-time crystalline order in scar states
To have a spacetime crystal, we need

0.6

<Zﬂ(t)ZW(())>H(‘..‘-].I‘/L2 = ]L(f)

as L = oo

0.5

(m|Z,(t)Z,(0)|m) =
e 2% lm + 1| Z.|m)|?

+ et |(m — 1| Z|m)|? + ...

(2= E,41 — E;n = const.)

0.02 0.04 0.06 0.08
1/L
Need

(m £ 1|Z,|m)/L — const.
(other matrix elements)/L — 0

Plausible! Because
Z. =8+

http://103020.191 9224 @&
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Space-time crystalline order in scar states
Example of a finite-size calculation in undeformed PXP:

Clear signature! 0.20

~]
\ ) ’
[

e F = () scar
Oscillations do = Pal
Nnot decay as = - E = 0.0039...

t = o0

Matrix element scaling even
improves substantially in the
deformed model!

http://103020191 9224 &
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Space-time crystalline order in scar states

Suggests an intriguing reinterpretation of the Harvard
experiment:
space
~ (Zi(t)) ~ (Zi(t)Z;(0))

- b/c initial state is a
time o toe Z eigenstate

ien et al., Natura 5§81, 579 (2017) Rydberg probability
Initial state projects dynamics onto scar states
Spatiotemporal coherence is an interaction effect

Decoherence due to level anharmonicity of scar states,
coupling to the environment

Test hypothesis in more detail by measuring, e.g., (Y;(t)Y;(0))

http://103020191 9224 &
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Summary
TI, M. Schecter, and S. Xu, arXiv:1903.10517

H!"::-—

hEe— = ... 1) Develop a magnon description

o of the PXP scar states
Makes contact with recent AKLT results

0.0 0.2 04 0.6 0.8 1.0
ki

2) Explore consequences: long-

1.0 gy ]
i | " Tttr range order in both space and time
Systems with “scarred” eigenstates: new

platform for eigenstate order

10,20/

—~

: b All results for PXP model are
X enhanced when model is
' deformed towards “perfect point”

http://10.30.20.191
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Outlook

Much more work ahead to understand these states in
PXP model

(what about, e.g., magnon interactions?)
(are constraints really necessary?)

Is there really a “perfect point?” How to find it?

Relationship to other known mechanisms for
strong-ETH violation?

AKLT tower of states
Moudgalya, Rachel, Bernevig, and Regnault, Invariant subspaces in Hilbert space

PRB 98, 235155 (2018)
- fdari® arYigedg 79()"
Moudgalya, Regnault, and Bernevig, PRB Tland M. Znidari¢, arXiv:1811.07903

98, 235156 (2018) Sala, Rakovszky, Verresen, Knap,
and Pollmann, arXiv:1904.04266

“Embedded Hamiltonians” Khemani and Nandkishore, arXiv:1904.04815
Shiraishi and Mori, PRL 119, 030601 (2017)
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Thank youl
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