Title: Quantum Many-Body Scars and Space-Time Crystalline Order from Magnon Condensation

Speakers:

Series: Condensed Matter

Date: April 30, 2019 - 3:30 PM

URL: http://pirsa.org/19040131

Abstract: We study the eigenstate properties of a nonintegrable spin chain that was recently realized experimentally in a Rydberg-atom quantum simulator. In the experiment, long-lived coherent many-body oscillations were observed only when the system was initialized in a particular product state. This pronounced coherence has been attributed to the presence of special "scarred" eigenstates with nearly equally-spaced energies and putative nonergodic properties despite their finite energy density. In this paper we uncover a surprising connection between these scarred eigenstates and low-lying quasiparticle excitations of the spin chain. In particular, we show that these eigenstates can be accurately captured by a set of variational states containing a macroscopic number of magnons with momentum $I \in$. This leads to an interpretation of the scarred eigenstates as finite-energy-density condensates of weakly interacting $I \in$ -magnons. One natural consequence of this interpretation is that the scarred eigenstates possess long-range order in both space and time, providing a rare example of the spontaneous breaking of continuous time-translation symmetry. We verify numerically the presence of this space-time crystalline order and explain how it is consistent with established no-go theorems precluding its existence in ground states and at thermal equilibrium.

Quantum dynamics

Fundamental: Many-body physics beyond ground states

Many new experiments, important questions for quantum info:

When and how is quantum information lost? How can it be retained?

Quantum many-body scars A new regime of non-ergodic quantum dynamics?

http://10.30.20.191 9224 💧

ETH: Every eigenstate is "thermal," all finite-energy-density eigenstates are "volume-law" Appears to be quite common for sufficiently "generic" many-body Hamiltonians Are there exceptions to this "rule?" Yes! Many-body localization (MBL): All states are area-law! http://10.30.20.191 9224 3:39 PM

Can we describe the scar states in terms of (nearly-)free magnons with momentum π ?

Yes.

This work: TI, M. Schecter, and S. Xu, arXiv:1903.10517

1) Develop a magnon description of the PXP scar states

2) Explore consequences: longrange order in both space and time

("eigenstate order" in highly excited states, w/o MBL!)

Single-mode approximation for magnons

Build low-energy excitations (magnons) above GS using

See also Bijl (1940), Feynman (1954), and Girvin-McDonald-Platzman (1986)

4:08 PM

Build low-energy excitations (magnons) above GS using

Magnon description of scar states?

Natural basis of magnon states:

Hamiltonian has energyreflection symmetry:

So we can also use the reflected states:

Problem! $\{|n\rangle, |\tilde{n}\rangle\}$ is not an orthogonal set

Use these states to make a "caricature" of each scar state

$$C H C = -H, \ C^2 = \mathbb{1}$$

 $|n\rangle = \mathcal{N}_n \, (S_\pi^+)^n |\mathrm{GS}\rangle$

$$\begin{split} |\tilde{n}\rangle &= \mathcal{N}_n \, (S_\pi^-)^n |\mathrm{CS}\rangle = C |n\rangle \\ |\mathrm{CS}\rangle &= C \, |\mathrm{GS}\rangle \end{split}$$

Source: KidZone Party Rentals

http://10.30.20.191 9224

4:15 PM

2) Explore consequences: longrange order in both space and time

("eigenstate order" in highly excited states, w/o MBL!)

Long-range correlations in scar states

Scar states appear well-described by states of many magnons. Does this mean they are "magnon condensates"?

Space-time crystalline order in scar states

What are time crystals?

Wilczek (2012): Spontaneous breaking of PRL 109, 160401 (2012) time-translation symmetry in ground states, analogous to spatial crystal formation

114, 251603 (2015)

Watanabe and Oshikawa (2015): PRL **114**, 251603 (2015)

$$\Phi_{\boldsymbol{G}}(t)\Phi_{-\boldsymbol{G}}(0)\rangle/V^2 \to f(t) \equiv \sum_{\nu \in \mathbb{Z}} e^{i\nu\Omega t} f_{\nu}$$

as $V \to \infty$

Proven to be impossible in ground states or at thermal equilibrium

But possible in highly excited states!

Space-time crystalline order in scar states

Time crystals so far:

Floquet time crystals—break *discrete* timetranslation symmetry

- Theory: Sacha, PRA **91**, 033617 (2015) Khemani *et al.*, PRL **116**, 250401 (2016) Else, Bauer, and Nayak, PRL **117**, 090402 (2016) von Keyserlingk, Khemani, and Sondhi, PRB **94**, 085112 (2016) Else, Bauer, and Nayak, PRX **7**, 011026 (2017) and many more...
- Expt.: Choi *et al.*, Nature **543**, 221 (2017) Zhang *et al.*, Nature **543**, 217 (2017) Pal, Nishad, Mahesh, and Sreejith, PRL **120**, 180602 (2018) Rovny, Blum, and Barrett, PRL **120**, 180603 (2018) Smits *et al.*, PRL **121**, 185301 (2018) Rovny, Blum, and Barrett, PRB **97**, 184301 (2018)

Continuous time crystals? Still controversial

Systems with ODLRO

Prethermalization

Wilczek, PRL **111**, 250402 (2013) Volovik, JETP Lett. **98**, 491 (2013) Watanabe and Oshikawa, PRL **114**, 251603 (2015) Else, Bauer, and Nayak, PRX **7**, 011026 (2017) Argued to be impossible in non-Floquet MBL systems

Khemani, von Keyserlingk, and Sondhi, PRB **96**, 115127 (2017)

And no experiments so far

TI, M. Schecter, and S. Xu, arXiv:1903.10517

t

 Develop a magnon description of the PXP scar states
Makes contact with recent AKLT results

2) Explore consequences: longrange order in both space and time Systems with "scarred" eigenstates: new platform for eigenstate order

All results for PXP model are enhanced when model is deformed towards "perfect point"

Outlook

Much more work ahead to understand these states in PXP model

(what about, e.g., magnon interactions?) (are constraints really necessary?)

Is there really a "perfect point?" How to find it?

Relationship to other known mechanisms for strong-ETH violation?

AKLT tower of states

Moudgalya, Rachel, Bernevig, and Regnault, PRB **98**, 235155 (2018) Moudgalya, Regnault, and Bernevig, PRB **98**, 235156 (2018)

"Embedded Hamiltonians" Shiraishi and Mori, PRL **119**, 030601 (2017) Invariant subspaces in Hilbert space

TI and M. Žnidarič, arXiv:1811.07903 Sala, Rakovszky, Verresen, Knap, and Pollmann, arXiv:1904.04266

Khemani and Nandkishore, arXiv:1904.04815

4:43 PM

