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Abstract: The theory of relativity associates a proper time with each moving object via its spacetime trajectory. In quantum theory on the other hand,
such tragjectories are forbidden. | will discuss an operation approach to exploring this conflict, considering the average time measured by a quantum
clock in the weak-field, low-velocity limit. Considering the role of the clock&€™s state of motion, one finds that all “"good" quantum clocks
experience the time dilation prescribed by general relativity for the most classical states of motion. For nonclassical states of motion, on the other
hand, one finds that quantum interference effects give rise to a discrepancy between the proper time and the time measured by the clock. | will also
describe& nbsp;how ignorance of the clock's state of motion leads to a larger uncertainty in the time as measured by the clock, a consequence of
entanglement between the clock time and its center-of-mass degrees of freedom.
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I INTRODUCTION
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Operationalism:

A concept 1s defined by the set of operations
by which 1t 1s measured or determined

Time 1s that which i1s measured by clocks

P. W. Bridgman, “The logic of modern physics™
(1927)
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Time 1n general
relativity

Pirsa: 19040127



T X / \/ guv(x)dardz
C

Pirsa: 19040127 Page 7/38



Pirsa: 19040127

Evolution parameter

ih (7) ) = H [1)

“Idealized” clock

[f we wish to construct a time observable:

(T.) =t =N [TC,HC] =




Given a finite-energy system,
how well can 1t function as a
clock?
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Generic quantum clock
{Te, He, pe(0) |

Clock “error operator”
—i [T, He| pe(t) = pe(t) + E(V

l
(Te)sn(t) = t +/ dt'tr [E(f’)]
0

“Good” clock: tr [E(f)] ~ ()




E.g. Salecker-Wigner-Peres clock

d—1

|,'” - \/_Z —~127jm/d |( >

1 =0
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E.g. “Quasi-ideal” clock

M. P. Woods et al. "Autonomous quantum machines
and finite-sized clocks." Annales Henri Poincare. 20, 1
(2019)
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Post-Newtonian expansion

20 (r 2P(r 2 d(r 3
T !l+ f"‘g ) " (g) ] +O(( (Ez)) )




Proper time of a moving

clock
_ | | -

_ ,U(z) -~ gro  vogl 1 (gt
T=1l-5st 2t 3\ :
: 2¢ c c 3\ ¢ '

- ol
Clock rest frame “Laboratory” frame
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Clock energy

[T .
pt = (E/c, p)
(norm 1s a scalar) \L

_ . 2 IR
Ela.b — \/_,(}()() (Emst -+ ])J'p-} (_,2)

Assume the clock has some internal

structure. Then by mass-energy equivalence:

Frost = mc® + E.
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Quantization

— 2 N g
Elab — \/—,(j()() (Emsl.. -+ p_,-p-f (.2)

Assumptions:

Low velocity

Weak gravity

Internal energy << rest-mass energy

M. Zych, PhD Thesis (Springer 2017)
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After quantization
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After quantization

Total Hamiltonian:
H:HC+Hk+HCl{

“Kinematic™ part:
32 ﬁ/l

3 : . !
Hy = mec® + magr + — — ,
| 2m  8m3c?

Interaction term:

A2 A

: - p g
Hy=H.® | — - -

| ’ 2m2c? = c?
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Neglected terms

(Ir[c/'777-"72)2 (]3/?7’1,(:)4
O(l/(_f/l) —

(9 )2 / ¢! gp° / m?c?




Time dilation 1n a
quantum clock
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Average clock time:

(L) (t) = (Te)an(t) + LR(E) {1+ tx [E(1)| ]

— —
.

Time dilation

n? gr  pgt g*t?
R(t) := tr [( + =+ == — = ) pk(())}

2m2 2 2 me? 3c2
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E.g. Gaussian (“classical”) motion

WMZ/@w@WM

Y(p) = 1 f’_(%l)zﬁ_ﬁ“(p_ﬁ”)
PARS (2mo2)t/4- ’




E.g. Gaussian (“classical”) motion

~

(L)1) = (Tehn(t) + LR {1+ tr | E@)] |

H2 2 3 - 2
1")(’) _ _1)() + O-p + '(};'I-(] + ])(]g/. B % (q{)

2m2 2 2 me? c
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Consider a classical clock whose position and
momentum follow Gaussian distributions:

VA gro  vogl 1 /gt 2
- 0 gr '0gt gt
T= 1|1 — — 4+ — + — — = | — 8
202 2 2 3\ ¢
=2 2 _ _ | 2
<T> N py + 0, 4 gro n Pogt B i ﬂ
2m?c> c? me? 3\ ¢
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E.g. Gaussian (“classical’”) motion,
1dealized clock

Quantum clock:

2 2
A . pPoto, grg pogt 1 fﬂ
( <?>(,‘) - |:1 - 9 )I + =5+ 2 _; e t

2m= ¢ Vona maec=

Classical clock:

_9 2 _ _
. Py + 0, gxr Pogt | (ﬂ
(1) = 1—‘..2.2}+ >t —5 — 5\ = L
2m=c C mc 3
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E.g. Non-classical motion,
1dealized clock

A;IT()




E.g. Non-classical motion,
1dealized clock

Compare with mixed initial state:

Pmix ‘= APy, + (1 — ) py,

which has mean clock time:

~

(Te)mix(t) = Q<TC>'¢'1 (t) + (1 — “’)(T >U2( )
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E.g. Non-classical motion,
1dealized clock

<T >511D( ) <T >1mx( ) + Tmh( )




Relativistic effects on
clock precision
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An uncorrelated 1nitial state of a general
bipartite system will only typically remain 1n
the set of separable states 1f:

- the eigenstates of the total Hamiltonian are

separable, or

- the nitial state 1s particularly mixed

K. Zyczkowski et al. "Volume of the set of
separable states". Phys. Rev. A, 58, 883 (1998)
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Standard deviation in clock time

For simplicity, we 1gnore gravity.

O'T(t) = OT,NR.(t) T O'T,I(t) T O'T,Nl(t)

(t) 2Pty
ST T 8o nr(t)  mich

Note: we needed to work to one order higher
In precision.
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Recovering the lost precision by
measuring the kinematic space

Consider a coarse-grained momentum measurement:

{ﬁ“rr,,(Sy)}'rz

X (n+1/2)dp
Hn,ép L= / dp |p> <p|k
J(n—1/2)dp

What is the uncertainty in the clock time after
performing the measurement of the kinematic space?
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q—0 (assuming most likely
q=1 outcome 1s obtained)

o
B
(
0.00 0.02 0.04 0.06 0.08 0.10
Laboratory time (s)
q:=dp/o, po =0 orxe(0) =1ns o0, =1nm
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Recovering the lost precision by
measuring the kinematic space

Conclusion: temporal information bleeds
into the kinematic degrees of freedom,
and can be recovered by measuring them
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Summary

“Good” clocks experience classical time
dilation (on average) for classical states of
motion

Non-classical states may result in a quantum
contribution to time dilation, a consequence
of interference

The coupling that causes time dilation also
entangles the clock time with 1ts motion,
encoding temporal information in the
kinematic degrees of freedom
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To do

* Translate into experiments

* Investigate recovery of clock precision in
the case of non-zero gravitational field.
Can we still recover all the lost
precision?

* Go beyond conditioning kinematic

measurements on the most likely
outcome
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I INTRODUCTION
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Thank you
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