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Important question: am I giving this talk as
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Important question: am I giving this talk as

reasonably competent mathematician not so competent physicist

I’l1l do my best to do a bit of both, but apologies to essentially
everyone.
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So, why bother at all?

A quantum field theory is a framework that looks very much like
differential geometry, but even it is not safe from Grothendieck. A
quantum field theory spits out a great number of categories as
different types of boundary conditions.

Just topological quantum field theories have had a powerful influence
in mathematics, being key in the development of theory of higher
categories and quantum knot invariants. But most quantum field
theories aren’t (purely) topological!

“Twisting” 1s a technique that allows us to start with a more general
quantum field theory and identify topological pieces inside it.
Sometimes there i1s more than one such piece, and we can play them
off each other.

Ben Webster UW/PI

Mathematical hints of 3-d mirror symmetry

Pirsa: 19040120 Page 7/24



My talk is going to be about 3-dimensional N = 4 supersymmetric
quantum field theory.

Why d = 3, N = 4?

Briefly: lots of room to have different topological twists whose
interaction we can think about.

In each of these twists, d = 3 O d = 1 is also a natural context in
TQFT for commutative algebras deforming to associative ones
(“almost commutative algebras™).

More specifically, d = 3, N' = 4 supersymmetric theories have an
action of Spiny(C) = SL,(C) x SL>(C). There are two twists that
privilege these two different factors, attached to the terms “Higgs”
and “Coulomb” which give us two almost commutative algebras.
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We'll be interested in one specific class of 3d N = 4 supersymmetric
quantum field theories: the gauge theory attached to a compact group
G and representation N over C,

In physics-speak, we couple an adjoint vectormultiplet for G with a
hypermultiplet tranforming in the representation N.

I’'ll only embarass myself when I try to explain what this means
precisely, but as a classical theory, there is no question about the
answer, in whatever framework you like to use for classical field
theories.

The quantum theory is a different story. I think physicists are
reasonably happy just saying that you do a path integral...this still
leaves them with questions they cannot answer.
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One of the key invariants of a QFT is the moduli space of vacua
which captures the topological part of the algebra of local operators.
This acts on everything in the picture (naturally on boundary
conditions, etc.).

For a 3d N = 4 supersymmetric theory, the moduli space of vacua is

a (singular) hyperkiihler manifold; a choice of a 2d N = (2,2)
supersymmetric boundary condition fixes a prefered complex

structure.

Classically, the moduli space of vacua is given by the equations:

.

(6,6 =0  (dp+m)- (X,Y) JAX,Y)+7=0
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The Higgs branch is when ¢ = m = 0, so the result is a hyperkihler
quotient:
My = {(X,Y) | Gg(X,Y)+7=0}/G

The Coulomb branch i1s when X = Y = 0, so

For T C G a maximal torus, 7 its Langlands dual.

The = 1s because this i1s the classical answer, and i1t will be “corrected”
when we quantize. The Higgs branch does not have this issue.
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Why as a mathematician am I interested in this story?

Hyperkihler quotients have proven to be very powerful objects in
geometric representation theory. Nakajima quiver varieties in
particular have shown themselves to be extremely important.

Thus, whenever we find a theory that has an interesting Higgs branch,

it’s very natural to look at its Coulomb branch to see if it is equally
interesting.

Unfortunately, for quite a few years, Coulomb branches could only be
computed from the quantum perspective for a few special theories,
such as when G was abelian, or the theory corresponded to an affine
type A quiver variety.
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In joint work with Braden, Licata and Proudfoot, we noticed some
very interesting features of these examples.

m There seemed to be a bijection between fixed points for natural
torus actions on the Higgs and Coulomb branches (known to
physicists)

m This bijection seemed to reflect a Koszul duality between
category @s (a surprise to physicists)

The functions on the Higgs and Coulomb branches both have
noncommutative deformations Ay and A based on the action of S*
on R?. Category @ is a category of modules over these quantizations
depending on a choice of mass and FI parameters.

These Koszul dualities needed to be checked rather indirectly,
especially in the quiver variety case.
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Luckily, eventually the issue of defining the Coulomb branch was
resolved by Braverman, Finkelberg and Nakajima.

Unfortunately, the answer is complicated enough that it would eat the
rest of my talk if I tried to explain it. Let’s just say that the affine
Grassmannian is involved.

This definition allows one to give a uniform proof of the Koszul
duality mentioned earlier:

Theorem

The category O’s attached to the Higgs and Coulomb branches are
Koszul dual.
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This proof spun off a surprising large number of additional
observations that I think are worth discussing:
m Gelfand-Tsetlin modules

m line operators and “monopole operators for paths.”

m noncommutative resolutions of singularities

Ben Webster UW/PI

Mathematical hints of 3-d mirror symmetry

Pirsa: 19040120 Page 17/24



The proof of Koszul duality for category ¢ factors through a larger
category: the Gelfand-Tsetlin modules for Ac.

The algebra A¢ contains a maximal commutative subalgebra S given
by invariant polynomials in ¢». A Gelfand-Tsetlin module V over A¢
is one on which § acts locally finitely (i.e. dim(S - v) < oo for all

v € V).

Question to the physicists:

Does this have a natural physical meaning?
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Theorem (W.)

The category of G-T Ac-modules is Koszul dual to a category of
“N-character D-modules” on the quotient N /G.

In particular, the category of G-T modules has a graded lift where the
dimensions of S-weight spaces can be computed by a
Kazhdan-Lusztig type algorithm.

This tells us something new and interesting about well-known
algebras.

Ben Webster UW/PI

Mathematical hints of 3-d mirror symmetry

Pirsa: 19040120 Page 19/24



Pirsa: 19040120 Page 20/24




Pirsa: 19040120 Page 21/24




PR S ——

Pirsa: 19040120 Page 22/24




Pirsa: 19040120 Page 23/24




In particular, this resolves a long open problem about Gelfand-Tsetlin
modules for U(gl,).

Theorem (Kazhdan-Lusztig-Beilinson-Bernstein-Brylinksi-
Kashiwara-Soergel-- - - )
If we consider the principal block Oy of U(gl,,), then

with simple modules matching the dual
canonical basis.

Theorem (KTWWY)

The principal block Cy of simple Gelfand-Tsetlin modules over U(gl,,)
has K°(Co) = (U(n-) ®@ (C")®")(,.....1y with classes of simples

matching dual canonical basis.
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