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Abstract: We give rigorous analytical results on the tempora behavior of two-point correlation functions (also known as dynamical response
functions or Green&€™ s functions) in quantum many body systems undergoing unitary dynamics. Using recent results from large deviation theory,
we show that in alarge class of models the correlation functions factorize at late times -> , thus proving that dissipation emerges out of the unitary
dynamics of the system. We also show that the fluctuations around this late-time value are bounded by the purity of the thermal ensemble, which
generally decays exponentially with system size. This conclusion connects the behavior of correlation functions to that of the late-time fluctuations
of quenched systems out of equilibrium.

For auto-correlation functions such as (as well as the symmetrized and anti-symmetrized versions) we provide an upper bound on the timescale at
which they reach that factorized late time value. Remarkably, this bound is a function of local expectation values only, and does not increase with
system size. As such it constraints, for instance, the behavior of current auto-correlation functions that appear in quantum transport. We give
numerical examples that show that this bound is a good estimate in chaotic models, and argue that the timescale that appears can be understood in
terms of an emergent fluctuation-dissipation theorem. Our study extends to further classes of two point functions such as the Kubo function of linear
response theory, for which we give an analogous result.

Joint work with Luis Pedro Garcia-Pintos and Jonathon Riddell
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Correlation functions/dynamical response functions
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Outline:

* At late times, “dissipation” occurs (A(t)B%@ — <A>ﬁ <B>5
* For most times <A(t)B>ﬁ ~ <A>[3<B>ﬁ (small variance)
* Autocorrelation function timescales: after given T ~ O(1)

(A(t)A)p ~ (A)p(A)s

* Some extensions and applications
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Correlation functions/dynamical response functions

A(f) . e—letHAeitH

" o R Kubo 1966 Rep. Prog. Phys. 29 255

This talk: rigorous analytical results on time evolution of
these functions, which apply to non-integrable systems.
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Factorization/dissipation
(A(t)B)s — (A)s(B)g

* Key assumption: Thermal states with finite correlation length on [) -dim lattice

A 9 — - a7 dist(A",Y
max K BY)s— (X)gV)g| -tz
Xex,yey XY

Tr(plle )y
* Their energy distribution follows “large deviation bounds”

 _(Na2¢)l/(D+1)

tr[pplls ()5 4 na] < O(E)e” O

Anurag Anshu 2016 New J. Phys. 18 083011
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Factorization/dissipation: “weak ETH”
(A(t)B)s — (A)s(B)3
* The key ingredient is a weak version of diagonal ETH:

Akk ~ <A>ﬁ “with high probability” or “for most eigenstates”

Mori (1609.09776): weak ETH follows from large deviation bounds (like those of Anshu)

* Still true for systems that do not necessarily thermalize: (d) Fizz = —0.0%
< 204
& 10
-Integrable? Biroli et al. PRL 105, 250401 (2010) R e Fizz = 0.000
-Quantum scars  Turner et al. Nature Physics 14, 745-749 (2018) = tzgg
= 104 e
N et —
Khemani et al. PRB 99, 161101(R) (2019) = °TH hia: = 0.071
- 204
N ’ N : &
H=-Y P 1XiPi1— Y hxz(P1XiPi1Zis2 + Zi2Pi1X;Piy1) 01
r : 0.4 02 0.0 0.2
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Factorization/dissipation: “weak ETH”

* Brandao et al (1710.04631) put together Mori ’16 + Anshu ’16 to obtain explicit
bounds

H translation-invariant on /V sites

Let P73 exponential decaying correlations, with corr. length f
A has support on (O(1) sites

(1D case, but works for higher D)

P eps (| Ak — (A)s] > 0) < exp(—cIN/?/€72)
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Factorization/dissipation: proof outline

- H translation-invariant on N sites, non-degenerate
Let - 3 exponential decaying correlations
- A, B have support on O(1)sites
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Factorization/dissipation: proof outline

- H translation-invariant on N sites, non-degenerate
Let - 3 exponential decaying correlations
- A, B have support on O(1)sites

T

dt
¥ —(A(t)B)5 = 2 A B
1111/0 T< (t)B)g E Pk Akl D

k
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Factorization/dissipation: proof outline

- H translation-invariant on N sites, non-degenerate

Let - 3 exponential decaying correlations
- A, B have support on O(1)sites
§ ) dt(A(t)B) > pecAwB 524 = Ay, — (4)
1 — — o ] o [ o Jo e '
T_IEO T ) D)3 : Plk Ak Dk k kk 3
= (A)a(B)s+ D pew({A)p0¢ + (B)aby! + 667)

k

(A)s(B)g+ C Z PrkOx + C Z PrkOk

0p, > 0% 03, <
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Factorization/dissipation: proof outline

- H translation-invariant on N sites, non-degenerate

Let - 3 exponential decaying correlations
- A, B have support on O(1)sites
§ ) dt(A(t)B) > pecAwB 524 = Ay, — (4)
1 e — o ] o Jo o I = Y '
T_I};lo T ) D)3 : Plk Ak Dk k kk 3
= (A)s(B)s + ) pue({A)s0 + (B)soi! + 607)

k

(A)s(B)g+ C Z PrkOx + C Z PrkOk

Small due to weak ETH Small if &) is chosen
(for () x large enough) small enough
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Factorization/dissipation: proof outline

- H translation-invariant on N sites, non-degenerate

Let - 3 exponential decaying correlations
- A, B have support on O(1)sites
: 4 e
711111 ?<A(t)B>ﬁ = Z Pk Ak Bk 0 = A — (A)g
e k
= (A)a(B)s+ D pew({A)p0¢ + (B)aby! + 667)
k
= (A)p(B)p+C Z Pri0r + C Z Pk Ok
5&:25* (Sk<(§*
<0 l0g N
= (A)s(B)s + O =)

VN
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Factorization/dissipation: result

- H translation-invariant on N sites, non-degenerate
Let - P3 exponential decaying correlations
- A, B have support on O(1)sites
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Factorization/dissipation: result

- H translation-invariant on N sites, non-degenerate
Let - P3 exponential decaying correlations
- A, B have support on O(1)sites
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log N
VN

ol L
i f T (A0 B)s = (A)5(B)y + O
= J0

This “dissipation” happens even if your system does not always
thermalize (strong vs. weak ETH). Not the case for 4-point functions.

)
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Average size of fluctuations

o
* Late-time average value (A(t)B>ﬁ: lim/ (—<A(_t)B>[3
0

(previous slide) T—00 T

78
: . dit ‘
* Fluctuations around it oag = lim / = |<A(t)B>5 . <A(t)B>[3|2
0

— O

Let A be such that : E] _ EA-: e EI, . Em . J = l, L=
Then:

o < IANIBITHE] o e
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Fluctuations in pure states/quenches

Let H be such that : E;=-Ey=E—-E, < j=lLk=m
T2
Then: AR < ||A||||B||T1[pﬁ]
There is a significant parallelism with results on Linden et al PRE 79, 061103 (2009)
equilibration of quenched out of eq. systems: Reimann PRL 101, 190403 (2008)

2

(WOIA(®) ~ WOTARGON < 14T @)

|
Purity of diagonal ensemble

Average size of out-of-
(related to ergodicity of dynamics)

equilibrium fluctuations

See also: Srednicki 1999 J. Phys. A: Math. Gen. 32 1163
Ritcher et al. 1805.11625
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Timescales of autocorrelation functions

* The behavior of (A(t)B)s might involve timescales depending on dist(A, B), N...
* How long until (A(t)B)g — (A)p(B)s?
* We focuson A = B

1.0
0.9

. - /T dt |{A(t)A) — (A@)A)p]?
i w & <A2>ﬁ

0.5

0.4
0.3
0.2

0.1
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Timescales of autocorrelation functions

LAt (A A)s — (A1) A)s]? _ male)
/0 - fz Yoy £ < ()

If Pkk |Ajk:| smoothly distributed, and not too many degeneracies (both
reasonable in non-integrable systems), it holds that

N Garcia-Pintos et al
a(e) i O(l) O(E) < 1 Phys. Rev. X 7, 031027 (2017)
If so, a relevant timescale is given by O A

o (A A, (H, AL A

(4%)5 (A%)5




Timescales of autocorrelation functions
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Timescales of autocorrelation functions

/T dt [{A(t)A)s — (A(H)A)sl® _ ma(e)
0 Ik (A%)s B a0k

+8(e)  A=ot,
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Timescales of (symmetric) autocorrelation
functions

Tt [({A®), Ahs — ({AQ®), AD)sl® _ mae)
/0 T [ZA2>B ’ = T + d(€)

If (prr + pii)|Ajkl? smoothly distributed, and not too many degeneracies (both
reasonable in non-integrable systems), it holds that

ae) ~O(1)  6(e) < 1
If so, a relevant timescale is given by 0 4
<[Av H] [H, ADﬁ
(A%)5

=
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Timescales of (symmetric) autocorrelation
functions

Tt [({A®), Ahs — ({AQ®), AD)sl® _ mae)
/0 T [ZA2>B ’ = T + d(€)

If (prr + pii)|Ajkl? smoothly distributed, and not too many degeneracies (both
reasonable in non-integrable systems), it holds that

a(E) B O(]‘) 5(6) << ]- Proportionality between timescale of

“dissipation” of perturbation A

(A%)g
<[A, H ] [H y A] > (3 ‘mergent “fluctuation-dissipation

=

theorem”?
(A%)p
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Timescales of autocorrelation functions: a suggestion

10'
Example: Mukerjee et al PRB 73, 035113 (2006)
\‘s ﬁcﬁ?& Fl'1 47) e
H ==\ Z c;‘.ch -\ Z C}Cj+2 +he +V Z NiNj41 N\
i i j a 10°}
Total particle current autocorrelation, decays at “late times”, and ;g
signals diffusive behavior: e
-1
-3/2 -
(J(t))p ~ t > Tan
100 10
Idea: If before this “late time” the decay is not as fast, our result g :
can be used to bound that “late time” Ty Mukerjee et al PRB 73, 035113 (2006)
If: Then:
ol Te 2
(J(Tain) J)p ~ k(J%)s oo Tale)| o (LHIH e (H
dit = 4 2\ 2\ 2
5(6) = 1 k?O'J <J >/3 <J ),6

Page 24/25

Pirsa: 19040108




Summary and open questions:

* If H local, translation-invariant, non-degenerate, and P3 has finite correlation
length, then

_ L de, anlog N
lim /( S LANBY 5 = (A)5(B) s + O “jﬁ)

T—o0 T

* Moreover, if [{ has non-degenerate energy gaps, the fluctuations around that
average are suppressed by tr[p%]

* Timescale for (A(t)4)s ~ (4)5 bounded by a constant in system size 0 4
* Whenis 0 4 a good estimate? Is the bound tight? In which models/observables?

e Timescales for <A(t)B>6 and more fine-grained information about the different
regimes (x N, N?,...)
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