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Abstract: | will describe an infinite set of exotic gauge theories that have recently and simultaneously emerged in several a priori unrelated areas of
condensed matter physics such as self-correcting quantum memory, topological order in 3+1 dimensions, spin liquids and quantum elasticity. In
these theories the gauge field is a symmetric tensor (not to be confused with higher form, which is an anti-symmetric tensor), or in more exotic
situations, the gauge fields do not have a well-defined transformation properties under rotations. | will discuss afew exotic features of these theories
such as (i) corresponding Gauss law constraints (ii) failure of the gauge invariance in curved space, (iii) the nature of the gauge group, etc. | will
also discuss the what kind of matter such theories can couple to. It turns out that the corresponding matter must conserve electric charge and various
multipole moments of the electric charge (or number) density. The conservation laws of multipole moments lead to dramatic consequences for the
dynamics. | will also discuss how such theories can be obtained by gauging a global symmetry. Finally, | will discuss non-local operators in this
type of theories. Remarkably, in addition to more-or-less expected Wilson line and surface operators, such theories exhibit (at least upon
discretization on alattice) non-local operators supported on a space of fractional dimension (in between line and surfaces).
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Fracton is a quasiparticle that cannot move

A combination of several fractons may move on a submanifold
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TWO TYPES OF FRACTON PHASES

There are two type of fracton models. type-I" and type-II". Precise
mathematical definition of either phase is not known.

Presently, type-l means that there exists a combination of fractons that can
move (either freely, or along lower dimensional manifolds).
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Historically, the “type-lI" models were discovered first. In such models no
combination of fractons can move (except the trivial one).

We would like to develop a field-theoretic approach to all such phases.

Chamon 2005 Haah 20l Sagar Haah Fu 2016
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HAAH'S CODE

Haah's code is the first discovered type-Il model. All excitations are immobile

Excitations are 7o charges created in quadruples at
corners of a pyramid.

Haah's model is topologically ordered, however it does
not appear to admit a description in terms of a TQFT

Topological order is often quantified by degeneracy without symmetry. Haah's code

has such degeneracy. It equals 2"", where k is given by
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A NOTE ON LANGUAGE

| will colloquially refer to both gapped and gapless phases that support fractons as
fracton phases

The phases with U(1) charge will usually be gapless, while Higgsed phases with Zy,
charge will be gapped.

Not all gapped phases that | discuss will be topological.
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OUTLINE

o Particle-vortex duality and emergent gauge fields
o Symmetric tensor gauge fields, type-| phases
o[nterlude . Kinematics of elastic defects
o Interlude II: Symmetric tensor gauge theories in curved background
o Conservation of multipole moments as a global symmetry
o Multipole gauge theory, type-l and type-Il phases
o A two-dimensional U(1) type-Il fracton phase
oFractal operators
oU(1) and 7, Haah code
o Conclusions/open directions
References:

AG PRL 122, 076403
AG arXivi812.05104
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PART I:
EFT FOR TYPE-I PHASES




PARTICLE-VORTEX DUALITY 2+1D

In condensed matter gauge fields can arise from conservation laws
L=0,0'0 P
Global U(1) symmetry implies the conservation law 0, J" =0

This conservation law can be solved via J'=€e'"ro,A,

Such representation of the current is ambiguous upto 04, = J,a

In terms of A,, the Lagrangian takes Maxwell form

~ L
L I FI},L} F!

b
¢

The Gauss law implies that charges for A, are vortices of ¢ = [¢|

(), E}; - l"” ()', .]

' - EYAYWAR
Peckin 1978 P ;=0 =¢€70,0;0

Daggupta Halperin 98]
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PARTICLE-VORTEX DUALITY 3+1D

In 3D the same logic leads to higher form gauge fields
y UVPN O
JH = (.“l’( ()1,4“'1’9,\
The charges for the 2-form ;4,))\ are the vortex lines
The gauge symmetry is 1-form symmetry
0A,\ = 0,a) — Orav,,

Such gauge theories are common, but they do not lead to fractons
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TENSOR GAUGE THEORY

Duality can lead to more exotic theories. Consider conservation of momentum
This conservation law appears in the theory of elastic medium. Solution

1 L[ & /

In components
Momentum: Stress:
1;,;“ = Pt - E*M'C)J'A.ik - B, T,_j'} = ¢’ E,?;k;

Ei, = —f‘i?ﬁ.k + O, C;

Keinert 1983 Pretko Radzihovsky 2017 AG 2017
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TENSOR GAUGE THEORY

The gauge redundancy of the field redefinition is

In components
0A;; = 0;q; 0C; =
Symmetry of the stress tensor implies that E-field is traceless Ei"" = (
The (flat space) action is two copies of Maxwell theory.
L=FE;E"+ BB 0 Eij = p;
Elasticity is different from two-component superfluid: the index that labels

components is spatial, and not internal. This is the defining feature of tensor
gauge theories.

Keinert 1983 Pretko Radzihovsky 2017 AG 2017
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SYMMETRIC TENSOR GAUGE THEORY

Let's take particular solution of the conservation law with a smaller gauge

redundancy «; = 0;«
(SAZJ — 82(9} < dp = v Ao = O; P
()681 E,-,;j — P = a,p[

Thus we have assumed that there exists a density such that
i

p = z! P

In ordinary elasticity such p happens to exist. It describes disclinations.

Kleinert 1983 Pretko Radzihovsky 2017 AG 2017
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SYMMETRIC TENSOR GAUGE FIELDS

The gauge transformation implies a Gauss law
0;0;Eij = p

Where p is the density of charge that couples to ¢

In the ground state there are no charges and

(2 - / P = / (9,(9}E,}. = / d}En; =0
J M J M JOM

Also, the total dipole moment of these charges is 0

L)k = / :".L'k,p = f)} Ek:j = / Ef,-,j},; — 0
J M J M JOM

Pretko 2016
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SYMMETRIC TENSOR GAUGE FIELDS

In ordinary Maxwell the dipole moment is not restricted

DA.:/ .Ifk.[):/ rR0; ;i :/ E;
M M M

Dipole constraint has dramatic consequences. Imagine a state with a charge

Charge cannot move because moving changes the dipole moment

Pretko 2016
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SYMMETRIC TENSOR GAUGE FIELDS

However, a dipole can move, since quadrupole moment is not restricted

| Il
"

In elasticity there is another constraint

2 v __
/ T P = / Ez — Pdefect
M M

This constraint prohibits the second process

Pretko 2016
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SYMMETRIC TENSOR GAUGE FIELDS

A hopping process is actually possible, but it is strange

Say, | have a charge
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SYMMETRIC TENSOR GAUGE FIELDS

Create a quadrupole from vacuum. (Not prohibited)
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SYMMETRIC TENSOR GAUGE FIELDS
Repeat
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SYMMETRIC TENSOR GAUGE FIELDS

Can hop by arbitrary distance, but will leave a ““scar” of dipoles

Dipole in the enclosed area is unchanged
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Interlude I: Kinematics of elastic defects

Elasticity is very well studied. Surely we are not discovering anything new.

The r.h.s. of the Gauss law 0;0;I/;; = p describes the crystal defects

The dipoles are dislocations. They are characterized by a Burgers vector b;

® o 0 0 o ® o 0 o o
® © 0 0 o ® o 0 o o
® o 0 0 o . o o -Lo °
® o 0 o o o o ' o o
e © 0 0 o o o o o

Dislocations can move only along b; (aka glide).

Moving perpendicular to b; (aka climb) requires erasing lattice cites.
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Interlude I: Kinematics of elastic defects

The immobile fractons are disclinations

From Beekman et. al. 2017

When a disclination moves, it leaves dislocations behind

‘ e Y

Dislocation can be viewed as a dipole of disclinations
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Historic note

Elasticity has been studied using duality transformations is a series of papers
by Kleinert in early 1980s, where he first introduced symmetric tensor gauge
theories

DUAL MODEL FOR DISLOCATION AND DISCLINATION MELTING

H. KLEINERT
Institute for Theoretical Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
and Freie Universitdt Berlin, Arnimallee 14, Berlin 33, West Germany

Received 14 March 1983
Revised manuscript received 28 April 1983

We show that defect melting involving dislocations and disclinations is dually equivalent to an extension of an XY mod-
el with an energy of the type ; j {[cos(Vjuy + v juj) + € cos v ; wj)}, where w;j = €,V jug is the local rotation field. The
model clarifies the proper choice of defect core energies arising from nonlinear elasticity. These permit the pile-up of dislo-
cations to disclinations which is essential for the first order of the melting transition,

It is useful to introduce the symmetric tensor gauge field x,; via 4 ;; = €;,, Vp, Xg;- Then

P g e e P R, . L L e, R L R O R I . L R, P R . Ry AL T PR

Kleinert 983
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SYMMETRIC TENSOR GAUGE THEORIES

Let's abandon the relation to elasticity and study symmetric tensor gauge
theories abstractly. Here is another example, not related to elasticity

“Vector charge” theory in 3D
B iy = €ikl Ej mn ()k am. 4417-;,

Charges in this theory are vectors and they can only move perpendicular
to the direction of charge. This happens due to a constraint

gk, _
/ e xipr =0

Gauge field can also be made a tensor, leading to even more restrictions

Xu Xu, Horava Pretko 2016
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INTERLUDE II: STGTS IN CURVED SPACE

These theories share a common property. There is a conserved vector*.

We encounter an obvious problem in curved space.

AG 2017

*Situation with CM theorem is not clear. These theories admit lattice realization and therefore exist (on a lattice).
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~ INTERLUDE II: STGTS IN CURVED SPACE

Formally, the magnetic field ceases to be gauge invariant in curved space.

In curved space we replace all derivatives with covariant ones

B; = €1V Agi 0A;j = V;0;a
Then

(SBl X [V.i, V;](“)](} X L)U(?] Y

The general relationship between curved space and fractons is not simple.
For example, in the 3D traceless ( £ = 0) scalar charge theory is doing fine

on Einstein manifolds, while traceless vector charge theory is fine on Einstein
manifolds of constant curvature.

Later | discuss more exotic theories, for which the relationship with curved
space is presently unknown.

Slagle Prem Pretko 2018 AG 2017
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PART II:
TOWARDS EFT FOR TYPE-II PHASES

| have greatly benefited from the following works

Bulmagh, Barkeghli arXiv:I806.01855

Pretko Phyge. Rev. B 98, 15134
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GAUGE PRINCIPLE

A gauge theory can be constructed by gauging a global symmetry.
What is the relevant global global symmetry for STGT?
The matter should have conserved charge and conserved dipole moment

Consider a real scalar 4. To conserve charge we demand global symmetry
00 = ¢
To conserve dipole moment we demand a ""global symmetry”
60 = \; !
This an example of a polynomial shift symmetry. Invariant Lagrangian
L =00+ (0;0,0)(0'070)
Noether theorem leads to the conservation of

Q:./.pz./‘é D-z:./.;l?il)

Lifehitz (941 Griffin, Grogvenor, Horava, Yan 2015
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GAUGE PRINCIPLE

Gauging such symmetry amounts to replacing
00 = c(x,t)

Introduce covariant derivatives
DO = 9,0;0 — Aj; JAij = 9;0;¢
Allowing A;; to fluctuate and providing generalized Maxwell terms we get
L=(0-¢)?+ (DV)?+ E;,;EY + B;B'
This is what we called scalar charge theory. The Gauss law is

Pretko 2018 AG 2018
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GAUGE PRINCIPLE

There is something strange about the global symmetry  §f = )\izzf’i'

The transformation depends linearly on the position. It does not commute with
spatial translations

(67,0510 = 1),
The commutator is a U(1) transformation with the parameter ¢ = r'\;

This symmetry is not an ordinary internal symmetry. It extends the algebra
of spatial symmetries. Gauging all generators will prove to be tricky

The symmetry does commute with rotations since A; are arbitrary

Simple quadratic extension §6 = \'|z|* leads to traceless theory with
conserved charge

AG 2018
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MULTIPOLE ALGEBRA

These symmetry algebra is an example of a more general multipole algebra

50 = Z A1, Pr, ()

a,l,

Where Py, (x) are homogeneous polynomials of degree a

These global symmetries lead to conservation of components of the multipole
moments of the charge density

If these polynomials are chosen "at random” then the symmetry will be
incompatible with all spatial symmetries.

AG 2018
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CONSISTENCY WITH SPATIAL SYMMETRIES

Consistency with translation can be phrased as follows

Pr(x+r)— P (x)= j{: ar,  Pr. (x)

In, 1

This means that commutator of translation in the direction 7 and Py, ()
must be a linear superposition of polynomials shifts of lower degree.
It may happen that only translations in some directions will satisfy that.

Similarly for rotations

P; (Ria") = Z Br. Pr. (x)

1(1,

Again, not all rotations will be compatible

AG 2018
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CONSISTENCY WITH SPATIAL SYMMETRIES

These consistency conditions are a consequence of the non-trivial
transformation law of multipole moments under translations and rotations.

These laws take form

Dipole Quadrupole
(SfD, — ItQ (5,*-D7;j = Ty (Q -+ ’T'szj -+ ’I"jD i

Multipole moments are only translation invariant if all lower moments vanish

More subtle compromises are possible

2>

o

"D =
(S-;.'Di}' =0
" lx—y plane

We have a 3D system with a 2D translation symmetry
AG 2018
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2D EXAMPLE

Consider a system where dipole moment in (1,-1) direction and the
Q11 + Qa2 — 2Q12 component of the quadrupole moment is conserved

v 22

This means that the states with dipole D Dy(1,1) are allowed. Note

07(Q11 + Q22 — 2Q12) =0
for any translation 7. Translation (but not rotational) symmetry is retained.

This type of systems is easier to study on a lattice

The dipole is mobile, but separating the charges is hard

AG 2018
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2D EXAMPLE

The matter Lagrangian IS Dimension of length

N\

L = 0%+ (D10)% + A(D20)% + X (D30)?

where the derivatives are

D10 =00+ 0,0 D0 = (02 +0,0,)0 D30 = (0, + 0,0,)0

These are invariant under the global symmetry

. : 2
00 =co+cr(x —y) + colx — y)°
Dispersion relation is

/ 1
2

i Ao\
w = |k + ks {1 + )\(kf + ij)}

Low energy physics is concentrated on a line k1 = —ko AG 2018

Pirsa: 19040103
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2D MULTIPOLE GAUGE THEORY

To gauge the symmetry | make the transformation local 46 = ¢(x)

L = 6° -+ (D19 o f'll)z + /\(Dg(} — ;"12)2 + /\,(DB() - 4"13)2

The gauge transformations are
VAL = Dyc 0As = Dse VA3 = Djc
Gauss law
DIE, + DIE, + DIEs = p

where DT is obtained from D via integrating by parts

AG 2018
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TYPE-II BEHAVIOR

Imagine creating a (1,1) “"particle”

Analogue of

e In dipole conserving theory
® ®
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TYPE-II BEHAVIOR
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TYPE-II BEHAVIOR
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TYPE-II BEHAVIOR

AG 2018
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2D EXAMPLE WITH FRACTALS

Consider condensing charge 3 particles. In this case charge is defined mod

3.
In this case charge -2 particle is equivalent to charge 1
@
) =
@
% |=
O—0

Which leads to fracton moving in a coherent fashion along a fractal space

0,
f’ b db ¢
¢
w w
* * *  db i *
0 -
* | w 4§
. @ . GP—Q* * 4 *

N~ AG 2018
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(GENERALIZED) SIERPINSKI TRIANGLE

O=0 O=1 O=2
by Beni Yoshida
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(GENERALIZED) SIERPINSKI TRIANGLE

by Beni Yochida

@
,.
* | %
%
 db ¢ NOIEE
@ e P Y e e
Y1 Noma:
*| % *| %
O—W O, T* Y P Y e
\ _,f—-""’ ® h O=0 O=1 @=2
‘ 52 ‘:;
3! 3 3

If we imagine periodic boundary conditions then a non-local ~"Wilson fractal”
operator is only possible for the system sizes are 3% x 3F
This system is gapped, but not topologically ordered

AG 2018
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HAAH'S CODE

We consider a U(1) version first
00 = co + ci(xy — x2) + ci(xy + xp — 223) + 3 (x) — x2) (w1 + T2 — 2x3) + 3(27) — 29 — 23) (T2 — T3)
Invariant Lagrangian

L =6+ (D160)% + AN(D20)? + X (D30)?

Where the derivatives are

D10 = (0, + 0, + 0.)0 D, = (97 + 05 + 97)0

D30 = (0,0, + 0,0, + 0,0,)0

Slightly different theory found by

Barkeghli Bulmagh 2017 AG 2018
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HAAH'S CODE

The theory has a whole zoo of symmetries

o Dipole(1,-1,0) and (1,1,-2) is conserved, and so are the quadrupoles

Q11 — Q22 — 2Q13 + 2Q)23 Q33 — Q22 + 2Q12 — 2Q13
o [ranslation invariance in all directions
0 SO(2) Rotational invariance in (1,-1,0)-(1,1,2)-plane

X y
o Anisotropic Weyl scaling

t— At, x—>/\%x, y—))\‘liy, T3 = A3, 0 — A—%()
o|nfinite subsystem symmetry

60 = f(x +iy) + g(x — iy)

AG 2018
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HAAH'S CODE

The theory has a whole zoo of symmetries

o Dipole(1,-1,0) and (1.1.-2) 1s conserved and so are the guadrupoles

Q11 — Q22 — 2Q13 + 2023 Qs — Qa2 + 2Q12

/IR 1} -

o Translation invariance in all directions

0 SO(2) Rotational invariance in (1,-1,0)-(1,
X

o Anisotropic Weyl scaling

t o AL, x—= Mx, y—

oInfinite subsystem symmetry

)= Bk am o)) A CE = A

Pirsa: 19040103
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'HAAH'S CODE

.

o

The original Z, Haah code is obtained by condensing charge-2 objects

AG 2018
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RESUME

o Fractons are particles with restricted mobility

o Their dynamics is described by theories with conserved multipole moments
o Gauging such symmetries leads to gauge theories of symmetric tensors

o Physical realizations: quantum elasticity and spin liquids

o Type-ll models can be described by generalized polynomial shift symmetries
o Such models are inherently anisotropic

o They also exhibit dimensional reduction at low energies

o Gauging the symmetries leads to multipole gauge theories

o Condensing charges leads to fractal operators
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