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Abstract: The fine grained energy spectrum of quantum chaotic systems, which are widely believed to be characterized by random matrix statistics.
A basic scale in these systems is the energy range over which this behavior persists. We defined the corresponding time scale by the time at which
the linearly growing ramp region in the spectral form factor begins. We dubbed this ramp time. It is also referred to as the ergodic or Thouless time
in the condensed matter physics community. The purpose of my talk is to understand this scale in many-body quantum systems that display strong
chaos (such as SYK and spin chain), sometimes referred to as scrambling systems. Using numerical results and analytic estimates for random
guantum circuits, | will provide summary of results on scaling of ramp time with system size in the presence/absence of conservation laws.
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1. Random Matrix Theory:

spectrum and nearest-neighbor distribution

* The partition function is (b=1, 2, 4 for GOE/GUE/GSE)
ZRMT = / (H de’j) S
t’!y
H is L-by-L Hermitian matrix

* Spectrum: Wigner semicircle

p.(E)= 2i\/4— E’,
JU

v
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[Wigner, Mehta ,Dyson]|
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1. Random Matrix Theory:

spectrum and nearest-neighbor distribution

B
p(E)
A

* Distance between E,,, and E_ levels is

S, = En+1 = En.

n

* Nearest - Neighbor: Wigner surmise

. A\ P(s)—rrrrrr W
- Avcragt NN distance <'§>- 4/L 09", Sinai’s billiard GOE: b=1 |
— The distribution of NN distance o8f ,{P i
07 |
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— This is standard test of chaos 02 |
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[Wigner, Mehta ,Dyson] e N
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1. Random Matrix Theory: beyond Wigner surmise
I
Wigner surmise has to do with eigenvalue repulsion.
To illustrate this one can re-write the GUE action in terms

v

of energy density Zcur = [ Dpe 51" where

S[p]=—% f dEp(E)E* + I* f dE, dE,p(E,)p(E,Jlog | E, - E, |

There is a logarithmic repulsion” (also know as Dyson gas)

Wigner surmise tests this repulsive behavior only in short
range, we need a new quantity to test it for further
eigenvalues.
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1. Random Matrix Theory: spectral form factor

* Denote the Lorentzian evolved partition function by
(H 1s the GUE Hamiltonian)

- - -BH-iHt ) _ -BE,-IEt g{t)“
Z(B.t) Tr(c ) 26 2

N

* The spectral form factor (SFF) is

L
<Z(ﬁst)2*(ﬁ’t)>mwr /
1 |

In the rest of the talk we will focus ‘ » 1
on =0 case. t, ty

g(®)=(2(0.0Z"(0,1))

RMT
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1. Random Matrix Theory: spectral form factor

In infinite temperature limit (B=0) we can express

g(t)= <Z 0,0)Z *(O’t)>ww = E R

m,n

For the large dimension L, we can express it as continues
integral of energies

g(t) =fd}51 dE,I* R(E ,E,) oI EE)

R(E,,E,) is the two-point eigenvalue correlator for RMT

Page 8/23



1. Random Matrix Theory: spectral form factor

t * The Ramp (red) & Plateau (blue)
9(t) ,
L1 ;
=, <t = 2L
g)=4 2
L, t=t =2L
L P

Example: GUE ensemble

* Important timescales

> Ramp time: time scale t_that universal
P linear growth starts. [ *** t ~ O(1) *** ]
Plateau time: time scale t, when ramp
saturates. [ *** t ~ L *** |

[Dyson, Gaudin, Mehta |
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2. Many-Body Chaos: overview

One-body chaos is a relatively old field of study. Spectral
form factor, ramp and plateau are well understood in a single
particle random hoping problem.

— SFF has a linear ramp and a plateau

— Ramp starts at the time t; that is the time for a particle to
diffuse across the system. Thus, t.~ N* for system of size N.

— The corresponding energy is known as Thouless energy.

[Altshuler, Shklovskii]
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2. Many-Body Chaos: overview

Many-body chaos on the other hand is a relatively young and
rapidly growing field of research. Recent results can be

categorized into two themes,
9(t)

i 121
A. Short time chaos

. L
B. Long time chaos | /
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2. Many-Body Chaos: SYK model

* Sachdev-Ye-Kitaev (SYK) is a theory of N Majorana fermions

1 N [Kitaev, Sachdev-Ye,
H = E E Jijkl wiwﬂbkwl Maldacena -Stanford,

T Polchinski et al.]

* Here y; denote Majorana fermions {y; v;} =9; and y;" = ;.

» J’s are independent Gaussian random numbers with mean 0 and width /6/N3J

» The Hilbert space of SYK model had dimension L=2N"2,
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2. Many-Body Chaos: numerical SFF in SYK model

100 =T r— T T
- SYK, N, = 34, 110 samples, =0, g(t)

Téime tJ

t x99 t o 2N?
27 ,

|[CGHPSSSST]

The Slope is non-universal and
comes from the sharp edge

¢(t)= 22" (1) oct%

The Ramp and Plateau are
believed to be universal in
quantum chaotic systems
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2. Many-Body Chaos: <yY*> instead of <2Z*>

g I SYK, N, = 34I‘ 110 sanrmple& |t:b. glr) I
0" * How early does the ramp start?
. "; * The place slope & ramp intersect
10 ( . . .
e ” ) is dubbed dip time
10° \Wﬁ, e * To really study the start time of
o H“"M the universal ramp one can use
10 . .
i . alternative quantity to SFF
_ Tnme fJ [S tan fhl‘d]
. H = 34, 90 samples
0.6
% 04 \ (I(E,,,h': ) -II(I:L -E,)
i Y(a,0)Y (a,t)= Ee
E 0.2 f \
0.1 /
/
0'.2- 1 L] 1 0.5 U 0.5 1 1.6 2
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3. Random Circuit Model: overview

At this point, there is no systematic way to compute spectral form
factor analytically in many-body chaotic systems.

In the case of SYK, there has been some recent progress using large
N properties, but the question is still not settled. [ Shenker et.al,
Altland, Bagrets|

To understand the physical mechanism behind ramp and plateau,
specifically the ramp time. We instead turn to random quantum
circuit models that can be studied analytically.
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3. Random Circuit Model: 1D Circuit

* Random quantum circuit in 1D (brickwork)

— N qubits on 1D lattice U,
— We have two qubit Haar random gate
— 1-th time step 1s a unitary
U!
U;‘ = E2384s BNy N-)B 12834 E(N)N
— Full unitary at time k [

u@t)=UuU,,..UU,
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3. Random Circuit Model: spectral properties

We are interested to compute at what time t this quantity gets very
close to it’s Haar value.

£ (k,t) = (THU* O] Tr[U ** (0)])

RQC

Consider k=2 case. Slowest decaying monomialis: U U U U’

ad ad ad aa

We study evolution of Ula)(a|U", where |a) = |00..00)
We can expend operator

a){al = o5 (I + 2)°"
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3. Random Circuit Model:

Markov process on Pauli strings

* Random circuit evolution = Markov chain on Pauli strings
O(t) =U(OOU* (t) = O(t) = Y7, ()0,
p

o, =IlIZZIIXIZYIZ]

[Harrow-Low|

* Defines a Markov process on Pauli strings: IXXZZXXIIZZ

* Markov rules:
— Identity remains invariant: IT = II

— All remaining 2 qubit strings spread uniformly: AB => 15 others
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3. Random Circuit Model:

ramp time in a quantum circuit model
L —

*  We need to equilibrate a typical string in

ay{al = o (I + 2)2Y

* Thatisofaform: [IZZZIIZZIZIIZZIII

* And are easy equilibrate for both 1D and all-to-all random quantum
circuit models. The ramp time estimate for those models

t xlog(N)

v * 1 -1
[ Yoshida et. al

This was in conflict with our numerics for Hamiltonian systems.
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4. Random Circuit with Conservation Law:

Hamiltonian versus random quantum circuit
I

* The key difference between Hamiltonian and random
quantum circuit model is the conservation law.

— Hamiltonian evolution conserve total energy of the system.

* Can we construct an analytically tractable random circuit
with a conserved charge? (not energy that is hard)

— XXZ random quantum circuit, which 1s a circuit that conserves
the total spin in Z-direction.

— We now study ramp time for the XXZ random g-circuit.
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4. Random Circuit with Conservation Law:

random quantum circuit with conserved total spin
I

* Study the XXZ Random Q-Circuit, which has a conserved charge
(total spin in Z direction) [Khemani-Vishwanath-Huse]

Uty=UuU,,..UU,

*A and C is Haar random from U(1)
*B is Haar random from U(2)

[n the basis of spin Z

Pirsa: 19040102 Page 21/23



Pirsa: 19040102

4. Random Circuit with Conservation Law:

Markov process for XXZ random circuit
I

The dynamics of this circuit can also be interpreted as Markov
process on the string of Pauli’s, but a different one.

Again, we compute f(k, t) for given spin sector.

Markov rules for XXZ random quantum circuit;
—{II,ZZ,(IZ + ZI)/2} are invariant [1710.09835, 1803.08050]
—{Io*, Zo*,0%1,0% Z} are uniformly mixed
—{o*teo,070",(IZ — ZI)/2}are uniformly mixed

—{o"o%,07 07} each pick up a random phase
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Summary

* Conclusion: In a chaotic many-body system with conserved charge,
onset of the ramp is the time it takes for a local charge to diffusive in
the entire system.

Evidence:

Single particle hoping problem (conserved particle number).

SYK analytic result with G and X variables by [Shenker et. al 1806.06840].
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