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Abstract: Recently we pointed out that the black hole interior operators can be reconstructed by using the Hayden-Preskill recovery protocols.
Building on this observation, we propose a resolution of the firewall problem by presenting a state-independent reconstruction of interior operators.
Our construction avoids the non-locality problem which plagued the "A=RB" or "ER=EPR" proposals. We show that the gravitational backreaction
by the infalling observer, who simply fallsinto a black hole, disentangles the outgoing mode from the early radiation. The infalling observer crosses
the horizon smoothly and sees quantum entanglement between the outgoing mode and the interior mode which is distinct from the originally
entangled qubit. Namely, any quantum operation on the early radiation cannot influence the experience of the infalling observer as description of the
interior mode does not involve the early radiation at all. We also argue that verification of entanglement by the outside observer does not create a
firewall. Instead it will perform the Hayden-Preskill recovery which saves an infalling observer from crossing the horizon.
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Taming Quantum Entanglement

Perimeter Institute 4/23/19
MPA Fisher

Classical system: Entropy always increases (2" law of thermo)
Isolated Quantum system: Entanglement entropy (= thermal entropy)
Entanglement entropy always grows

“Disorder always reigns”

How to control (entanglement) entropy growth?

Via Measurements — disentangle

Measurement driven entanglement transition
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Entropy: Thermal “versus” entanglement

Thermal entropy: .y
- ) 'B
Numb‘e.rofstales‘ b,‘j; [ ‘P[f).’/r ]11/)”’} ~ L(]
extensive for T>0
T
Entanglement Entropy: Single eigenstate H|g /,_“(
- \ /
p = |U)(y 5 |£1>
Entanglement entropy: [A) \ T"‘b’ ( /)) !
Sa(L)= -Tra(palnpa) A
>
L
ETH: Equivalence of Thermal and entanglement entropies

Sa/Lt =Sy /L% L —

Thermal entropy is state counting, entanglement entropy
depends on the properties of the states!
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Entanglement Dynamics (i.e. Growth)

(a) 10’
1) Quantum Quench

Evolve unentangled initial state w/ Hamiltonian
I

H =Y (gof + ho} + Jojo},,) >

1=1

—L=16
—L=14

L=12
——L =10

—~—L=8

Entanglement spreads ballistically,
even though energy diffuses

Linenar fit

10° r 10' 10°

Half-cut entanglement entropy  Kim + Huse (2013)

2) Unitary Dynamics with no energy conservation

Quantum circuit: evolve Qubits w/ (random) unitary gates 250
Initial state: unentangled product state

Entanglement spreads ballistically, into maximal entropy state .

150

100

E 50

0 100 200 300 100

Nahum, Ruhman, Vijay, Haah (2017)
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How to control (entanglement) entropy growth?

Via Measurements

Measurement driven entanglement transition
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Taming entanglement w/ measurements
“Hybrid Quantum Circuit” w/ both unitary and measurement gates

* Unitary evolution induces entanglement growth
+ Measurements induce disentanglement

Explore competition between
unitary evolution and measurements

Li, Chen, MPAF (2018/2019)
« Skinner, Ruhman, Nahum (2018)
+ Chan, Nandkishore, Pretko, Smith (2018)

Yaodong Li Xiao Chen
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“Hybrid” Quantum Circuit

Quantum circuit w/ unitary gates and projective measurements

2-Qubit Unitaries:

1-Qubit Measurements

Make measurements with probability, p

Phase Diagram??

p=0; No measurement, Volume law entanglement
p=1, Measure every Qubit, no entanglement (area law)
Transition at p=p.??

O >
Entangled phase? Disentangled phase? 1

?7?
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Numerics on Hybrid Circuits?

Direct simulation very challenging for large L
(since the Hilbert space grows as 2"

Employ Quantum information “technology™:
« “Stabilizers” to encode special “codeword” quantum states
+ Evolve stabilizers with Clifford unitaries

* Measurements of Z-component of spin

Gottesman-Knill Theorem: Such quantum circuits can be efficiently simulated
on a classical computer (accessing >500 Qubits, say)
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“Hybrid” Quantum Circuit

Quantum circuit w/ unitary gates and projective measurements

2-Qubit Unitaries:

1-Qubit Measurements

Make measurements with probability, p

Phase Diagram??

p=0; No measurement, Volume law entanglement
p=1, Measure every Qubit, no entanglement (area law)
Transition at p=p.?7?

0 TP
Entangled phase? Disentangled phase? 1

?7?
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Numerics on Hybrid Circuits?

Direct simulation very challenging for large L
(since the Hilbert space grows as 2"

Employ Quantum information “technology™:
- “Stabilizers” to encode special “codeword” quantum states
+ Evolve stabilizers with Clifford unitaries

* Measurements of Z-component of spin

Gottesman-Knill Theorem: Such quantum circuits can be efficiently simulated
on a classical computer (accessing >500 Qubits, say)
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Pauli Strings, Stabilizers and Codewords

Pauli operators for a single Qubit {1,0,,0,,0.} - {1,X,Y, Z}

Pauli String Operators for L Qubits: g — l 1 }“”2 ,X;; /.1 .er) . Z[t

 H [ H

Stabilizers and “codewords”;

‘(‘> is a “codeword” state if “stabilized” by L independent,
commuting Pauli string operators  (J Y T(‘>

Example 1: |¢)) = |00, ...0) is stabilized by Gj — Z;

A%

Example 2: 1)) ]_ -(|00) + [11)) s stabilized by g1 = Z1 Z
X, X

/2
o = . :

o
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Clifford Unitaries/Dynamics

Clifford unitaries take Pauli string operators Ay Ap
into other Pauli string operators U 0] Ul g

H B — H B

Unitary evolution of a “codeword” state: follow the dynamics of the L stabilizers:

If |'l;'f:"> stabilized by §;j then [} = U

L‘> stabilized by g';- — [_,-*'”J [T
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Measurements and Stabilizers

Consider a projective measurement of a codeword  (; ‘ (> — ‘ i>

1) — Pyl|y) Pr=(1+2)/2

Measuring Z-component of |'" qubit

If Z; anticommutes with g, and commutes with g,,...,g, (say)
the stabilizers are modified under the measurement as:

1.0 ....( sy 4+ ao. ....C when the result of the
{'“ 92 JL} { i 92 'HJ} measurement is + ]
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Entanglement and Stabilizers

Stabilizer length [ \ length=6

g=1112X31425Ys172319119

Entanglement entropy S,

( | [ [ l

Denote number of stabilizers starting in Aand endinginAB.Cas Tl , TLp, Tl

Entanglement: S/\ - (‘T?» b ;T?» c ) log ( 2)
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Measurements and Stabilizers

Consider a projective measurement of a codeword  (; ‘ (> — ‘ ﬂ>

) = Pil)  Po=(1%2;)/2

Measuring Z-component of j'" qubit

If Z; anticommutes with g, and commutes with g,,...,g, (say)

the stabilizers are modified under the measurement as:

1.0 ... ( sy 4+ ago. ... ( when the result of the
{'“ 92 '/L} { i 92 '/L} measurement is + ]
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Entanglement and Stabilizers

Stabilizer length [ \ length=6

g=1112X31425Ys172319119

Entanglement entropy S,

B A i C

b a \ e

| | [ f

Denote number of stabilizers starting in Aand endinginAB.Cas Tl,, T, Tl

Entanglement: jsf/\ - ("ﬂ» b ;'T?» C ) l()g ( 2)
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Entanglement and Stabilizers

Stabilizer length [ l length=6

g=1112X31425Y5172319119

Entanglement entropy S,

B A C
( N =

o]

Denote number of stabilizers starting in Aand endinginAB.Cas Tl,, T, Tl

Entanglement: ‘SY/\ — (n b ;‘T?» c ) l()g ( 2)
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Clifford Circuit: Simulable

All 2-Qubit unitaries taken from the Clifford group: :
1) -:

All single Qubit measurements taken from Pauli group

b random unitary

+ local-Z measurement

‘(_;‘f> — ‘L'f I ]> = L;

. P W )
1) — 1Y) Py =11+2)
' VPt 2

Make measurements with probability p

Simulate Clifford quantum circuits on classical computer
(accessing >500 Qubits)

(Comment: For Clifford circuits, all Renyi entropies are equal)
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Entanglement Entropy

Long-time steady-state of Clifford circuit

p=0.0 p=0.17
p=0.03 p=0.18
p=0.05 p=0.21
p=0.07 p=0.23
p=0.09 pu0.25
p=0.11 p=0.3
p=0.13
o p=0.15
. "
10 50 100 500

In(L4)

Volume law
entanglement

Increasing
measurement rate

Area law
entanglement
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Entanglement Transition

Li, Chen, MPAF (2018)
Entangled phase Disentangled phase

0 @ 1P
P<p. Pc  p>p.

p
apla;  p < pe

log(La); p=pe

| const; P > Pe
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Mutual Information: Locates transition

Iap =S5A+ 5B — S4B

v T ————p———————— e e e e,

0.04} & Lesd
' L =128
L = 256
0.03¢ Le812 4
)
<
= 0.02¢
B
0.01 La=Ls=L/8
O-OO LLLLLL 1 . . - —_
0.0 0.1 0.2 0.3 04 0.5
p

const; p = pe

_ 0, p#pe
Tag(L >X>{ _ D # Pe
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Data Collapse: Mutual Information

0.04} ' Less
L=128
L = 258 1
003- L=512 4
o
<
= 0.02¢
0.01¢
0.00 ,
-4 -2 0 2 4
(p-p)L"
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Log Scaling at Criticality (p=p..)

Sa(La) =a.log(Ly) . ~ 1.0

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

8
6
oy
< -
- 4 59
8
<
%)) o L =256
2. « [ =512
alp:) In|A |
Ote . . .
0 1 2 3 4 5
In|A|
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"Log” Scaling Collapse
Sa(p,La) =Alog Ly + G(LA/E)

é: ™~ ’p o p(_:|_y v~14

SA ([) [zl) — Sl (p('f_* l’;'l) - G(Ll/{)

100 l L=12
! L=16
L=20
L=24
L=32
1 ¥ L=64
' L=128
L=256

10

ISa(p,L/2)-Sa(pc.LI2)|

0.1

~10 _5 0 5 10 15
(p - pe) L
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Conformal Symmetry at criticality (p=p.)

*If* have underlying conformal / AB = /(,2) o]
field theory, then mutual information ) ‘ /
depends only on the cross ratio L1234
N =
L13224
Tis ! sin | { lz; — x,])
I‘_,"\ B [5 [.I.f{.‘[.l.l

={x3,24]

la=ix, x,).8

0.050 0.100
n

0.005 0.010
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Correlation functions

| ‘C) \C);;.}r -
Iap > ' '

all correlation functions 2 |O04lI?||OB

Mutual information upper bound for ~ |

2

Averaged squared correlation function e or , \
gea =q - (OA0B)|* # Tr(pOaus)
(not equal to expectation value of any operator) '\ / -

A 7 12 Peak at p=p..

.= A (OaO0p).|> ___T%8%a PPPe

C | — ‘ZJ } L=8 |

0.005| »

rE A | L=16 |

0.004| L=32 J

7 N, e [ L= ]

Op = ? L P 1 L=

B & 0.003]
|A]= (8| = L/8 v 0.002]
0.001}

0.000! Fperprnttimy——— 3 G

0.0 0.2 0.4 0.6 0.8

Consistent w/ power law decay at criticality (p=p.)

2

1(OA0B).

~ ‘.1‘_.\ — &R
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“Hidden” log inside volume-law phase

Entanglement entropy: A

& a |
e |
L A

b,log(La)+a,La; p<pe.

Sa(La) =~ < b.log(Ly); P = Pe
log(&): P> Pe

log(La)+ apLa

]()U
/( onst
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“Hidden log” inside volume law phase:
Stabilizer length distribution function

In D(x)

Inx

EEE—

Increasing measurement rate
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Stabilizer length distribution function

( by ‘e 9).
T2 + ”po('l' o [/2) P < Pec Long stabilizers + power law
D(;I'. f,-) ~ < ?3 P = Pe Power law
= l—\ D > Pe Short stabilizers
\ o
Entanglement entropy follows: Sa = “5" log(2)

Sa(La) = [;* dxy [} dzaD(xy — 2, L)

B, | LA c

T B
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"Hidden" log inside volume-law phase

Entanglement entropy: A

1
& o |
- >

b,log(La)+a,La; p<pe
Sa(La)~ < b.log(Ly); H=1.

log(&): D> Pe

log(La)+ apLa

]()“
/( onst
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Circuits with (Translational) Symmetry

Floquet-Clifford Circuit

Circuit with (quasi-)
periodic measurement
locations

Floquet w/
periodic measurements
(no randomness)

]
CNOT,

4
3 CNOT
=2 PxH

local-Z measurement

random unitary

All exponents the same!!

Sulp: A |=L12, L)-Sulp.: IN=LI2, L)

L2, Ly

Salp, W|=Li2, L)-Suln |1A

100
50

o

00

=L12, L)y-Syip. . WN=LIZ, L)

B-pIL™

t

e-p)t’™

5
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Beyond Clifford: Haar random Unitaries
Haar random unitaries with a F—H |J—l| ,J—Ll ,J—H

single qubit projective measurements o #I ﬁ:’e []’:7] t l::t] random wnitery

Skinner, Ruhman, Nahum (2018) €2 + P ——

w

"

Mapped Zeroth Renyi entropy (n=0)
to (first passage) percolation, with t=0

p=Y =1/2

Numerics for n-th Renyi entropy; ' ' ' T
“Different transition”, p.<1/2

Li, Chen, MPAF (2019) | . | ‘

Mutual Information, varying Renyi index, n <
T - L L 171 > 1l
AB =94 +953 —Oap |/ 2|

N>l ¢ ~eiirs
p.= ~ 0.2 | | tiiny
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Random Haar w/ Generalized measurements

p, — 1£Z My = AE2Z_ e [0,1]
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Random Haar w/ Generalized measurements

Projective measurements Generalized measurements
- 1+ )7 )
p, — 122 My = A€ [0,1]
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Beyond Clifford: Ising Floquet Unitaries

With generalized measurements:
No randomness

T L T YT Y
AB =S54 +S5g — Sip

> e
/\j,’ '~ 0.25

12 o n=2>0
n =1
10 1 2
7 X
=
- g 70 = 0.8, hz = 0.809
8]
» B hy 0.9045
. § » M, ~1+ M\
[ ] ®
2 » 2
»
. P "
soa®sy” on
(] ccesssssssasaasssssssBioss 200000300008

0 0.2 0.4 0.6 0.8

A
A =1

Ur =

s = e

-

==
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Measurable in Cold Atoms/lons?

“Comb” Lattice
O O
~—7
Set-up

+ Bosons hopping on a “comb” lattice

+ Make projective measurements on “top” of “teeth”

+ Compute (and measure?) averaged-squared number fluctuation correlation function
+ Expect power law decay at criticality

[{(ON ASNB) |2 ~ |24 — 2B|
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Cold atoms set-up

Three steps:

) ¥’

i . Projective
Ug =e "™Hs e measurement >

Environment

Hs =Y XPX5, +YSYS, + 32825, + 52825, gSvsiem
1

BT e Ve P Ve T i
He=rY_ X'XF+Y7YF :
Projective
t
measuremen VVYVYVYVYVYYVYVYYY
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Transition accessible in principle

See a peak for L=20, L,=1, Lg =1, X, — xg = 10

[1[)) 4§_\’1Ig_\‘.f-{, ) 2

13 0

12

h" 0 0.2 04 0.6 08 _\
, K

But in practice? Might be hard to measure from ensemble of (different) pure states

(Y[ON A0N gli))

Why?

Cannot measure expectation value in a one-shot measurement (exploit self-averaging?)
Making multiple copies of each pure state will be hard

Pirsa: 19040099
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Summary: Taming Entanglement

Quantum Entanglement Transition:

Competition between unitary induced entanglement
and measurement induced disentanglement

Open/future:

+ Genericity of Clifford transition?

* Analytic access to 1+1 transition?

« Transitions in d>17?

« Dual gravity description? Black hole information paradox?

« Experimental access?? Quantum computer or cold atoms/ions?
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Firewall vs. Scrambling

1 2
Review of Firewall argument Review of Hayden-PreskKill
3 4
Interior operator from HP recovery State-independent interior operators
5 6
Effect of infalling observer Resolution of the puzzle
7

Discussions

Beni Yoshida (Perimeter Institute)
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Firewall vs. Scrambling

1 2
Review of Firewall argument Review of Hayden-Preskill
3 4
Interior operator from HP recovery State-independent interior operators
5 6
Effect of infalling observer Resolution of the puzzle
7

Discussions

Beni Yoshida (Perimeter Institute)
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Proposals (for impatient listeners)

* | will construct the interior operator in a “state-independent” manner without
involving the distant radiation ever. It “avoids” previous no-go results.

* | will show that the infalling observer leaves non-trivial gravitational backreaction
and disentangles the outgoing mode from the early radiation, no matter how she
falls.

(Each phrase will be defined more precisely later)
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Proposals (for impatient listeners)

* | will construct the interior operator in a “state-independent” manner without
involving the distant radiation ever. It “avoids” previous no-go results.

* | will show that the infalling observer leaves non-trivial gravitational backreaction
and disentangles the outgoing mode from the early radiation, no matter how she
falls.

* | will argue that the infalling observer sees a smooth horizon. Her infalling
experience cannot be influenced by any operation on the early radiation.

(Each phrase will be defined more precisely later)

Pirsa: 19040099 Page 43/114



Firewall vs. Scrambling

Review of Firewall argument

Beni Yoshida (Perimeter Institute)
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Firewall puzzle(s), brief summary

From the outside (Bob)

C : Remaining black hole

D : Outgoing mode

R : Early radiation

, ( r=2GM + e
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Firewall puzzle(s), brief summary

From the outside (Bob) From the inside (Alice)
C : Remaining black hole
D : Outgoing mode DD : Rindler modes
R : Early radiation

[(D. D) ~ max

“old” black hole

[(D, R) ~ max

I(C,D)~0

w = 2G'M + ¢ R e

P
.

pememmaa,
—
S/

cemmmeme”

-
LT

---------
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Firewall puzzle(s), brief summary

From the outside (Bob) From the inside (Alice)
C : Remaining black hole

D : Outgoing mode

[ D : Rindler modes
R : Early radiation

I(D. D)~

Iax

“old” black hole

[(D, R) ~ max [(C,D) =0

.

pemEE -

D

-
-
LT

-
.

""""""""
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Firewall puzzle(s), brief summary

From the outside (Bob) From the inside (Alice)

C : Remaining black hole
D : Outgoing mode DD : Rindler modes
R : Early radiation

[(D. D) ~ max

“old” black hole

[(D, R) ~ max [(C,D) =0

» [(D.D)=0 firewall?

-
e

D

pemmmm——
-
LT

LT

.........

Pirsa: 19040099

Page 48/114



Interior operators

* In outside description, ) is supported on (/¢ noton (' (remaining BH)
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Interior operators

* In outside description, [) is supported on ("¢ not on (' (remaining BH)

* Non-locality problem

Place R at a far distant universe.

“A = RB" approach, “ER = EPR" approach (This is how quantum gravity works?)
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Interior operators

* In outside description, ]) is supported on ("' /? not on ' (remaining BH)

* Non-locality problem

Place R at a far distant universe.

“A = RgB" approach, “ER = EPR" approach (This is how quantum gravity works?)

D

“long throat” AdS
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Interior operators

* In outside description, [) is supported on ('/? noton (' (remaining BH)

* Non-locality problem

Place R at a far distant universe.

“A = RB" approach, “ER = EPR" approach (This is how quantum gravity works?)
*» State-dependence problem

- Interior operators depend on the state, namely R.
- Violation of Born rule, Frozen vacuum, ...

- Papadodimas-Raju proposal for state-dependence, ...

C

cD

“long throat” AdS
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Firewall vs. Scrambling

2

Review of Hayden-Preskill

Beni Yoshida (Perimeter Institute)
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Hayden-Preskill, brief summary

* Alice throws a quantum state into an old black hole. Bob collects the Hawking
radiation and reconstruct the original state.

C : Remaining BH
D : Late radiation

R : Early radiation

b)

|1
ta,.
V

o
tp  tr
U
Tf-\ HI
1) EPR
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Hayden-Preskill, brief summary

* Alice throws a quantum state into an old black hole. Bob collects the Hawking
radiation and reconstruct the original state.

C : Remaining BH

D : Late radiation - Bob needs to collect just a few qubits from D.

R : Early radiation

) i - ” '
. V) Black hole as mirrors”™ (Hayden-Preskill)

V : recovery unitary
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Out-of-time order correlation

* Hayden-Preskill : Haar random U. Existence proof of decoder V.

: input

: remaining BH
: late radiation

. early radiation

00 %>P
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Out-of-time order correlation

* Hayden-Preskill : Haar random U. Existence proof of decoder V.

* Hosur-Qi-Roberts-BY : decay of out-of-time order correlator (OTOC) implies
existence of V. (2015)

. . + . + \ l . -4 . : ++ 1 . F
(0A(0)0p (1O (0)01,(1)) = ST (O UTOpUO UTOLU) . \T Lou

: input

: remaining BH
: late radiation

: early radiation

00 >»
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Out-of-time order correlation

* Hayden-Preskill : Haar random U. Existence proof of decoder V.

* Hosur-Qi-Roberts-BY : decay of out-of-time order correlator (OTOC) implies
existence of V. (2015)

i i l + i -+
(0A0)0p(1OL(0)0}()) = - Tr (04U OpUOLUTOLU) . \T"-m

0 /;1()_“«),; (0A(0)0p(H)OT,(0)0],())

T_-\ B
A'a C D R &
T T " EPR
, A input
v C : remaining BH
x 3 “state representation” of U D : late radiation
] R : early radiation
EPR EPR
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Out-of-time order correlation

* Hayden-Preskill : Haar random U. Existence proof of decoder V.

* Hosur-Qi-Roberts-BY : decay of out-of-time order correlator (OTOC) implies
existence of V. (2015)

(04(0)0p (O (0)0L, (1)) = -l}'rr (O UTOpUO UTOLU) R
_ { : | B 7
e /d(_)_uf()“ (0A(0)0p ()0, (0)0], (1)) 0
T_\
‘partner operator”

A ¢ D I ay C D R

m I T T or A :input

C : remaining BH
U _ D : late radiation

R : early radiation

s

EPR EPR EPR EPR
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Decoding protocol

* Kitaev-BY : decay of OTOC implies “simple” recovery protocols. (2017)
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Decoding protocol

* Kitaev-BY : decay of OTOC implies “simple” recovery protocols. (2017)

* Project DD onto the EPR pair. (probabilistic)

projection

T( “n u[) (fT n,lf
U/ u*
T.l B 15 it

) EPR

“Decoding protocol”
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Decoding protocol

* Kitaev-BY : decay of OTOC implies “simple” recovery protocols. (2017)
* Project DD onto the EPR pair. (probabilistic)

* Deterministic protocol : incorporate Grover algorithm, unitarily restore DD in EPR.

projection

[ EPR ] f A

T( ”u 7o) ( T 4 A

) EPR

“Decoding protocol”
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Decoding protocol

* Kitaev-BY : decay of OTOC implies “simple” recovery protocols. (2017)
* Project DD onto the EPR pair. (probabilistic)

* Deterministic protocol : incorporate Grover algorithm, unitarily restore DD in EPR.

projection

T( ”u 7o) ( T 4 A

U U

1) EPR

“Decoding protocol” “Traversable wormhole”
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Firewall vs. Scrambling

Interior operator from HP recovery
(BY 2018)

Beni Yoshida (Perimeter Institute)
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Interior operators

* and the AMPS problem...

1.],) C IR a D (|f Hf
Op ('3( R
| | C : Remaining BH
U - U D : Outgoing mode
3 Z 3 R : Radiation
EPR EPR

Split R into AB, and rotate the diagram.
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Interior operators

* Interior partner in A (a few qubits in R) and C (remaining BH)

D B A C D B A C
| | |
Op O
[ rl - [ 1 ]
Nk T o1 C : Remaining BH
D : Outgoing mode

R : Radiation
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Interior operators

* Interior partner in A (a few qubits in R) and C (remaining BH)

D B A C D B A C

AC

O3 0)

> 3 7 3 > 3 C : Remaining BH

D : Outgoing mode
R : Radiation

AMPS Reconstruct D (outgoing) from C (remaining BH) and A (early mode)

HP Reconstruct A (early mode) from B (initial BH) and D (outgoing)
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Interior operators

* Properties

* You can choose any subsystem A from R to reconstruct D

« Construction of Dis naturally fault-tolerant.

e Dis “almost” inside C with a few extra qubits from R.

C : Remaining BH

D : The zone

R : Radiation
D B A C D B A C
] 1 ]
Op O
Ut UT
AD C 4 ll) C 4

Pirsa: 19040099
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Interior operators
* Properties

* You can choose any subsystem A from R to reconstruct D

« Construction of Dis naturally fault-tolerant.

e Dis “almost” inside C with a few extra qubits from R.

* Problems ... C : Remaining BH
D : The zone
» Construction is state-dependent. (/ » K)|EPR) R : Radiation
* Non-locality problem (use of A)
D B | C D B A C
| | |
(')T? (-),fu
Ut U”
Ahl) C [ ) “l) C I 3

Pirsa: 19040099
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Some lessons

* Reconstruction of interior operators

If Alice takes A, then Alice possesses the EPR pair

If Alice didn't take A, then Bob possesses the EPR pair

D /C AN By AB : Radiation (R)
- 1 C : remaining black hole
U D : outgoing mode
F 3 t
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Some lessons

* Reconstruction of interior operators

If Alice takes A, then Alice possesses the EPR pair

If Alice didn't take A, then Bob possesses the EPR pair

D C \ ' B “-.' AB : Radiation (R)
oo o C : remaining black hole
[/ D : outgoing mode
F 3 t

* We can choose A to be any small subsystem !
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Firewall vs. Scrambling

State-independent interior operators
(BY 2019)

Beni Yoshida (Perimeter Institute)
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“Long-throat” “AdS” black hole

* Very complex AdS BH (/ @ K)|EPR) D | |c 4p

[/

B

EPR

Long-throat AdS = K is arbitrary, BH not evaporating
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“Long-throat” “AdS” black hole

* Very complex AdS BH (/ @ K)|EPR) D : AR

sl T

(
‘[

[0, ] I
3
B

EPR

Ay © boundary modes

I3; : other modes

Long-throat AdS = K is arbitrary, BH not evaporating
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“Long-throat” “AdS” black hole

* Very complex AdS BH (/ @ K)|EPR)

Prepare ancillary EPR and apply SWAP

D : R

sl T

(
Tr
[0, ] I
3
B

EPR

A, : boundary modes

I3; : other modes

Long-throat AdS = K is arbitrary, BH not evaporating
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“Long-throat” “AdS” black hole

* Very complex AdS BH (/ © K)[EPR) D C AR

Prepare ancillary EPR and apply SWAP
sn

sl T

T .
h
; 5
t:L,(l
“/g

E

EPR

EPR

Ay © boundary modes

EPR I3; : other modes

Long-throat AdS = K is arbitrary, BH not evaporating
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“Long-throat” “AdS” black hole

* Very complex AdS BH (/ @ K)|EPR) D C AR
Prepare ancillary EPR and apply SWAP
ol ol Diel 4a
-
’. :
3, A, l.-k] [\
B
EPR
| [/ I I3y
A, : boundary modes
EPR I3; : other modes

« [) can be reconstructed on ('and A,

without ever accessing R

Long-throat AdS = K is arbitrary, BH not evaporating
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State-independence
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State-independence

* Construction does not depend on K

Dl | AR
L2 |
7 7
| U | 2%
b
B
EPR
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State-independence

* Construction does not depend on K

* \Works for one-sided BH too.

0)&n

R
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Evaporating black hole

[],,:

W=

Ay

[)),l 2

. high-energy radiation
modes on the zone

modes at stretched horizon

By L1
I
l,"’"f I
B, | [ 4, | R
U
B | L]

Page 81/114



Firewall vs. Scrambling

5

Effect of infalling observer

Beni Yoshida (Perimeter Institute)
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Including Alice

* Consider the eternal AdS. Bob's can verify entanglement on DD from the boundary.

t = —At
A, M
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Including Alice

* Consider the eternal AdS. Bob's can verify entanglement on DD from the boundary.

* Add an apparatus M which travels along with A.

M becomes gravitational shockwave. Bob's entanglement is disturbed.

Due to decay of OTOCs. D

t = —At
A M
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Including Alice

* Consider the eternal AdS. Bob's can verify entanglement on DD from the boundary.

* Add an apparatus M which travels along with A.

M becomes gravitational shockwave. Bob’s entanglement is disturbed.
Due to decay of OTOCs.
t =20

* Outgoing mode D is disentangled from R (RHS) ?

t = —At
A, M
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Including Alice

* Consider the eternal AdS. Bob's can verify entanglement on DD from the boundary.

* Add an apparatus M which travels along with A.

M becomes gravitational shockwave. Bob's entanglement is disturbed.

Due to decay of OTOCs. D
t =20

* Outgoing mode D is disentangled from R (RHS) ?

“Proof” t = — At
|“ ('| R A M

Small OTOC — (', D) ~ max

0) ——— D is not entangled with R

EPR
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Including Alice

* Consider the eternal AdS. Bob's can verify entanglement on DD from the boundary.

* Add an apparatus M which travels along with A.

M becomes gravitational shockwave. Bob’s entanglement is disturbed.

Due to decay of OTOCs. D

* Outgoing mode D is disentangled from R (RHS) ?

“Proof” t = — At
|” ('| R A M

Bl [A _\Il Small OTOC — /((', D) ~ max

0) ~——— D is not entangled with R

EPR

* Works for black holes on flat space. (Follows from QM and OTOC decay).
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Sending probes

* Shoot a probe mode into the BH (mimics the reconstruction protocol)
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Sending probes

* Shoot a probe mode into the BH (mimics the reconstruction protocol)

* OTOC decay implies ['*(D. EC) ~ max , so D is not entangled with R,

» Qutgoing mode is disentangled from early radiation no matter how Alice

falls in !

e Decay of OTOC is universal gravitational phenomena.

* Interior operator does not depend on R, but depends on the observer.
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Sending probes

* Shoot a probe mode into the BH (mimics the reconstruction protocol)

* OTOC decay implies ['?(D. E(') ~ max , so D is not entangled with R.

» Qutgoing mode is disentangled from early radiation no matter how Alice

falls in!

» Decay of OTOC is universal gravitational phenomena.

* Interior operator does not depend on R, but depends on the observer.

* Some caveats

This requires scrambling time separation.

A (or E) needs to be as large as D.
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Bulk interpretations

* Treat Alice as a shockwave

D

D

without Alice D —— D) with Alice [) —— |)
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Bulk interpretations

* Treat Alice as a shockwave

D

D

without Alice D —— ) with Alice [) —— )

« Interior operator D is outside the causal influence of RHS. Alice won't be affected
by RHS.

Pirsa: 19040099 Page 92/114



Bulk interpretations

* Treat Alice as a shockwave

D

D

without Alice ) —— ) with Alice [) —— )

« Interior operator D is outside the causal influence of RHS. Alice won't be affected
by RHS.

Resolution of non-locality problem

* Alice sees a “phantom” of D. Non-locality problem can be resolved.
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Firewall vs. Scrambling

6

Resolution of the puzzle

Beni Yoshida (Perimeter Institute)
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AMPS thought experiment

* Original argument

outgoing
mode early radiation

D
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AMPS thought experiment

* Original argument

outgoing

mode early radiation
D
\‘ D

-
- -
- -
------

--------

entangled
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AMPS thought experiment

* Original argument

---
----

outgoing /
\ mode BH early radiation

-
- -
- -
-
---------

entangled
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AMPS thought experiment

* Original argument

.....
-

. outgoing
+  mode early radiation
Al
*
D
: D
entangled

Pirsa: 19040099 Page 98/114



AMPS thought experiment

* Some previous proposals...

entangled

.....
- -

." outgoing /
, ~mode BH early radiation

-
-
- -
T - -
- -

entangled
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AMPS thought experiment

* Some previous proposals...

__ entangled

I' “‘
1’ “
. outgoing / » D
\ ~mode BH early radiation
Al

*

y D same ?
\“ "l D

- -
----
“““““
--------

entangled
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AMPS thought experiment

* Qur proposal

outgoing /
\ ~mode BH early radiation

-
- -
- -
-----
--------
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AMPS thought experiment

* Qur proposal

_________ entangled
. outgoing / ® D
\ mode BH early radiation
D
A Alice
. . D
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Opposite limit of monogamy relation

* Bob can stop Alice from seeing the EPR by preventing her from jumping into the BH.
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Opposite limit of monogamy relation

* Bob can stop Alice from seeing the EPR by preventing her from jumping into the BH.

— Perform the Hayden-Preskill recovery !
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Opposite limit of monogamy relation

* Bob can stop Alice from seeing the EPR by preventing her from jumping into the BH.

— Perform the Hayden-Preskill recovery !

* Recall the recovery protocol by BY and Kitaev... Verification of V1) entanglement.

projection

[ R | i

T(" ”.u “ﬁ ( T 4l

) EPR

Pirsa: 19040099 Page 105/114



Pirsa: 19040099

Opposite limit of monogamy relation

* Bob can stop Alice from seeing the EPR by preventing her from jumping into the BH.

— Perform the Hayden-Preskill recovery !

* Recall the recovery protocol by BY and Kitaev... Verification of 1)) entanglement.

* Bob’s verification of the EPR pair performs the HP recovery

projection

T(" ”.u “ﬂ ( T 4l

1)) EPR
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Opposite limit of monogamy relation

* Bob can stop Alice from seeing the EPR by preventing her from jumping into the BH.

— Perform the Hayden-Preskill recovery !

* Recall the recovery protocol by BY and Kitaev... Verification of 1)) entanglement.
* Bob’s verification of the EPR pair performs the HP recovery

* Since Alice does not cross the horizon, she will not see the EPR pair.

projection .
o [ER ] A
T( ”u “ﬁ ('T 4 A
( U~
T,l 51 s af
) EPR
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Firewall vs. Scrambling

7

Discussions

Beni Yoshida (Perimeter Institute)
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Before scrambling time

» Before the scrambling time, Bob may still see the EPR pair. Why Alice
cannot see the EPR pair?

A, M
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Before scrambling time

» Before the scrambling time, Bob may still see the EPR pair. Why Alice
cannot see the EPR pair?

e Scenario 1

Alice see D very close to the singularity.

D

t=—-At
A, M
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Before scrambling time

» Before the scrambling time, Bob may still see the EPR pair. Why Alice
cannot see the EPR pair?

e Scenario 1

Alice see D) very close to the singularity.

e Scenario 2

The quality of the EPR pair becomesbad ? 7 = .

To have small 2, we need At 2 rglogrg
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Before scrambling time

» Before the scrambling time, Bob may still see the EPR pair. Why Alice
cannot see the EPR pair?

* Scenario 1

Alice see D very close to the singularity.

* Scenario 2
D
{ ()
The quality of the EPR pair becomesbad ? T = ,,_1_‘”
. t = —At
To have small 2, we need At 2 rglogrg Y
* Scenario 3

Even if they are not entangled, it won't create a firewall ?
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Entanglement wedge reconstruction

* Can we use the Hayden-Preskill recovery to construct the state-independent
interior operator in the entanglement wedge?

D

A, M
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Firewall vs. Scrambling

1 2
Review of Firewall argument Review of Hayden-PreskKill
3 4
Interior operator from HP recovery State-independent interior operators
5 6
Effect of infalling observer Resolution of the puzzle
7

Discussions

Beni Yoshida (Perimeter Institute)
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