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Abstract: So far artificial neural networks have been applied to discover phase& nbsp;diagrams in many different physical models. However, none of
these& nbsp;studies have revealed any fundamentally new physics. A maor problem is& nbsp;that these neural networks are mainly considered as
black box& nbsp;algorithms. On the journey to detect new physicsit isimportant to& nbsp;interpret what artificial neural networks learn. On the one
hand this& nbsp;allows us to judge whether to trust the results, and on the other hand& nbsp;this can give us insight to possible new physics. In this
talk | will&nbsp;

discuss applications to different models where we successfully& nbsp;interpreted what was learned by the neural networks.
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Invitation: Phase transitions
from microscopic physics
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Invitation: Phase transitions

from microscopic physics
Hamiltonian
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Outline

Introduction to Machine Learning

- Interpreting Neural Networks

Examples:

- Ising Model in 2d
- SU(2) Lattice Gauge Theory
- Hubbard Model on the Hexagonal Lattice (preliminary)
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(Supervised) Machine Learning

4
., Machine learning is the subfield of computer science
that gives computers the ability to learn without
being explicitly programmed. ™ - Wikipedia
Training Data Test Data
7
Machine
Learning
; >
Algorithm Dog
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Artificial Neural Networks

Feed forward neural network
/ B\

Perceptron
X1 W1
-+ X3 W3
o Hidden output y= f(Z W +Db)
Layers
¢ N P

Input: Data X
OQutput: }fp'red

|

(fla ooy I’n) ,Label Y = ('y], veey yn)

F (X wk b,{’ )

i)

Goal: choose w{; and b; such that Yy,eq = Y
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Training

Objective functions (loss functions)
- Eg mean squared error (average over all samples)
[ Q 1 = = L pL\\4

MSE = N Z (T — F(Zx, w3, b))

k
Training

- Determination of 'w,l-Lj and bZL

- Gradient descent

OMSE OMSE

and

ow f} (%__f’

- Backpropagation algorithm
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Convolutional Neural Networks

Best performers at image recognition competitions among all
machine learning algorithms

- AlexNet (2012), VggNet (2014),
GooglLeNet(2014), ResNet (2015)

Each neuron of the next layer only sees a small part of the
previous layer (Recepive Field)

- Translational Symmetry
- Shared Weights (less parameters)
- Preserves spatial structure
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- Labels: Phase

Supervised Learning
2d Ising Model

- Data: Monte Carlo samples - Testing in interval containing

» Training at well known points piiss s Sensiion

iIn phase diagram - Estimate within 1% of exact
value - _ 2

= In(1 + v/2)

Average Classification

1.0
I .‘\'
[ \ a 0.8
| | =
L
n
| g 0.6
\ M | a
| c
\ =
‘w 0.4
(=]
=
7
%
\! ’.' i)
i triain here  teft here , train here &~ Vo2 1. © 1x1 Net
T T % T -  1x2 Net
jTe TR
/\ = ExactT,
0.0 . - " ‘
0 1 2 3 4 5
' Temperature
Ferromagnet | Paramagnet ‘ SMperRiuce. I

Carrasquila, Melko, Nature 2017
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Machine Learning of Phase Diagrams Overview

y
y
|

\

/
b y

Pro+ Con -

Pirsa: 19040090

Feed Forward Most powerful  Conv Layer Least
Neural Spatial Interpretable Carrasquila, Melko,
- Network Structure . Nature 2017
% Support Vector Interpretability Not suitable for
c i Ponte, Melko,
5 Machine large datasets Phys Rev B 2017
& | Recurrent Dynamical _
Neural Systems WEle
Bairey, Refael,
Network Phys Rev B 2018
© | Principal Interpretability Most easy to
g Component use Wara
S | Analysis Phys Rev B 2016
Q.
> Autoencoder Conv Layer
S (Neural Spatial Wetzel,
Network) Structure Phys Rev E 2017
2 Learning by Nieuwenburg,
5 ; Liu, Huber,
f Confusion Nature 2017
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Progress Towards New Physics

So far machine learning of phase diagrams did not find any
fundamentally new physics.

- My bet is on feed forward neural networks
However, there are serious problems for making progress

Cristoforetti, Jurman,
Nardelli, Furlanello,

Example XY-Model in 2d: | arxiv 2017

> Unbinding phase transition of Sondngutuch,
topological vortices | Phys RevB 2018

- Direct application of Neural Networks yields wrong phase
boundary

-~ Correct results require significant feature engineering

If the system is unknown there is a high chance to make a
wrong prediction!
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Machine Learning of Phase Diagrams Overview
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Feed Forward Most powerful Conv Layer Least
Neural Spatial Interpretable Carrasquila, Melko,
= Network Structure || Nature 2017
&  Support Vector Interpretability Not suitable for
c i Ponte, Melko,
5 Machine large datasets Phys Rev B 2017
& | Recurrent Dynamical :
Neural Systems eanend
Bairey, Refael,
Network Phys Rev B 2018
?% Principal Interpretability Most easy to
£ Component use ore
S | Analysis Phys Rev B 2016
Q.
> Autoencoder Conv Layer
S | (Neural Spatial Wetzel.
Network) Structure Phys Rev E 2017
2 Learning by Nieuwenburg,
- : Liu, Huber,
f‘ Confusion Nature 2017
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Notion of Interpretability

If the neural network bases its
decision on one single
quantity/obervable Q(.S)

- The larger the observable, the

higher the classification . The Neural network can be
probability. mapped via a bijective
If two inputs have the same ~~ function to the observable

value of the observable, they F(S) = f(Q(S))
have the same classification
probability.
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Interpretation of Neural Network

Sample Localization Averaging Prediction
Configuration Network Layer Netwark

Interpretation Net: _— @, }_._ g

Wetzel, Scherzer, PRB 2017

- Interpretation Net interpolates between a general NN and a
minimal optimal NN which has the same performance

- Interpretation by reducing the NN capacity in an ordered
manner until one observes a performance drop

-~ Inspired by extensive physical quantities (averaging layer
provides extensiveness)
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Interpretation of Neural Network
2d Ising Model

Starting Neural Network:

- Conv Net with full :
receptive field | |

- Training until converged

- Remember Loss value as g |
) train here test here train here
measure of performance B

Ferromagnet | Paramagnet
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Interpretation of Neural Network
2d Ising Model

Reinitialize the neural network
with reduce receptive field sizes

- Train again until converged
and compare the loss to the
previous network

- Observe drop in
performance from 1x2 to
1x1 and from 1x1 to
baseline

- Dominant contributions must
contain functions of spins
and neighboring spins

Receptive Fields

o o0 o
o @ (0 @

~

o (o

|
|
o o0 o

rlh‘(‘('pl ive Field Size Train Loss Validation Loss
28 x 28 6.1588¢ — 04 Doy
1x2 1.2559¢-04  1.2105e-07
1 x1 0.2015 0.1886

baseline 0.6931 0.6931
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Interpretation of Neural Network
2d Ising Model

2nd Network: 1x2 receptive field
- Express the full neural network in 1x2 form

F(S) = ( Y. feng)

<1,93>7

> Taylor expansion contains only one addition to 1x1 case
f(5i,85) = fo.o + frosi + fo18; + fo0s; Hfr18i85 i+ foo bf +

- Regression yields explicit form

- 1 Energy /2
D(S) ~ sigmoid (w (N Z ) + b )

<t,3>T

- Only half the energy since we dont sum over all neighbors
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Interpretation of Neural Network
k 2d Ising Model

|
4

Receptive Field Size  Train Loss  Validation Loss

- f 28 x 28 6.158%¢ - 04  0.0232

ecision tunctions 1x2 1.25590-04 1.2105e-07

F(S) = sigmoid(w Q(S) + b) 1x1 0.2015 0.1886
haseline (0.6931 0.6931

Magnetization | Kashiwa, Kikuchi,
| Tomiya, arxiv 2019

> Q(S) = |]/NZ Si

1 | Kim, Kim, Phys Rev E 2018

> Q(8) =+ Y sisi 1 Expected Energy per site

<1, 1>nn

1x1 Net 1x2 Net

Deduction easily confirmed: — 09

(a) 0.8

Spins
S
=
o o
O -~

- Perfect correlation
Note:

1x2 Network also has
the Magnetization minimum . @ g |
which is easier to find!

o

Norm of Average of
Average Product of Neighbors

0.0
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SU(2) Lattice Gauge Theory

Describes smallest loop on the lattice
Swilson[U] = Bratt Z Z Retr (1-Ug,)
€T <y

Uf;p - [Ii [JTI+[!(]I+;I+V[7!+U A

el
L A ~___ Each Matrix connects two lattice sites
U;”j e SU(2) - P

5 o i . 7 Toy model for confinement in
U =ail+i(blo1 + cloz + dios) QCD.

> . :
T - Polyakov Loop is Order

L Parameter for in the limit of
- Each Matrix is parametrized by  infinitely heavy quarks.

4 real numbers.

: ~» Perfect Testing Ground:
We performed a MC simulation Polyakov Loop Order

on a lattice of size 8x8x8x2 as Parameter is non-linear and
input for the Neural Network non-local.
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Unsupervised Learning (PCA)
k SU(2) Lattice Gauge Theory

- Latent parameter does not
correspond to order parameter

Switson[U] = fair Y | Y Retr (1 = UL). PCA + Reconstruction loss can

i be used to infer different
phases
Training at phase indications e
from unsupervised learning , dspoimseTransiion ,, g (bt.)rorrplatmn‘wor :
(wait for next slide) E el
g 25 1¥ %:.
E e gl s Z 00
¢ A ~
03015 30 25 30 3.5¢ R e e e T
Lattice Coupling & Norm of PC
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Supervised Learning
k SU(2) Lattice Gauge Theory

- Find phase transition close to
lattice calculation

Switson[U] = Biawe ) Y Retr (1= UL). Prediction is inaccurate:
5 Monte Caro Simulations not
thermalized

10, Average Classification

Training at phase indications T
from unsupervised learning s o8 :
Testing in interval containing :
phase transition il S
= Calcutation
5 1 "m0, 1% 00

Lattice Coupling 3
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Interpretation of Neural Network )
SU(2) Gauge Theory (2x8x8x8 Lattice)
Train Loss Validation Loss

Receptive Field Size

2xEx8 xS 1.0004e - 04 2.6266¢ - 04

8.8104e-08  6.8276e-08

2.2292e-07  4.2958e-07
0.6620 0.9482
0.6931 0.6931

General decision function:
F(S) = sigmoid(w Q(S) +b) S 1"

- 1 o B

2x1x1x1 Decision function: e

F(S) =~ sigmoid | w Z L 1) ) +b

s .
) #+ 7.3816 r.fr.u}_ +0.2529 a,b, + ...

i(\( ‘u“}
- 0.2869 d” ¢! - 7.2279 b0b!

Regression yields 561 terms:
- 7.3005 f“r L~ 74642 H'r(flr :

F{US Y = alaz = blb: —ele: = d2de =1L (UU7)

Polyakov Loop
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Interpretation of Neural Network
SU(2) Gauge Theory (2x8x8x8 Lattice)

|
4

Receptive Field Size  Train Loss  Validation Loss

General decision function: 2x8x8x8 1.0004e = 04 2.6266¢ - 04
s R T I e WP, 2x1x1x1 8.8104e-08 6.8276e-08
F(S) = sigmoid(w Q(S5) + b) 2x1x1x1*  2.2202e-07 4.2058¢-07

S ; Il Lo 0.6620 0.9482

2x1x1x1 Decision function: baseline {)(:!;.’,I 0.6931

F(S) ~ sigmoid (w ( 2 FHC 2 ) + b)
FQU,"}) ~+7.3816 alal +0.2529 albl + ...
Regression yields 561 terms: - 0.2869 d"¢! - 7.2279 20!
- 7.3005 cDek - 7.4642 dod. .

FUUZY) = afar = blb: = ¢le: = d)dt = tx (U2U1)

- Polyakov Loop Note: We have constructed
the PL without prior knowledge!
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Hubbard Model (Hexagonal Lattice)

Model for Graphene
H = —¢ Z ((‘:I!gczj!,, + h.c.) + UZ“?H‘T“?-.i

<i,;}l>,,,,.,,_,(‘r
H-.z'.’n = CI._C!'C?;;(T
- Introduce complex Hubbard-
Stratonovich fields

d)la d)i*a d)za ¢)§

> Produce bosonic field
configurations on 12x12x256
lattice

> Examine the transition between
Semimetal and Spin Density
Wave with NN
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Supervised Learning

Hubbard Model (Hexagonal Lattice)

(Very preliminary!)

Employ Convolutional Neural
Network on raw bosonic
configurations.

Observations:

- Classification curve is relatively

flat and thus gives an
inaccurate phase boundary.

- Adifferent weight initialization

can lead to a shifted phase
boundary.

assification probability

—
o

o
(=

=]

B

U 02

16
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F(S) = sigmoid(w Q(S) + b) a?
o
: 5
- The NN employs a completely i ¥
local quantity to distinguish . A

Interpretation of Neural Network
Hubbard Model (Hexagonal Lattice)

(Very preliminary!)
Interpret NN like before. Correlation of neural network

with regression

between phases.
Q(S) = 1/N Y (43 z + 1.5¢1% + 65 z — 0.5¢5%)

€T
- All known order parameters are

nonlocal in terms of bosonic
fields!
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Conclusion

Neural Networks are capable of producing phase diagrams for
many physical systems.

- |In order to trust the results of NNs we need to understand
what they learn.

> NNs are no longer a black box algorithm in the context of
order parameter based phase transitions.

- Neural Networks learn the same physical quantities that we
humans use (Landau/Ehrenfest)

- In some cases we can determine the nature of phases by
constructively interpreting what neural networks learn.
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