Title: Abelian topological order on lattice with electromagnetic background

Speakers:

Series: Condensed Matter

Date: April 09, 2019 - 3:30 PM

URL: http://pirsa.org/19040087

Abstract: The construction of soluble lattice toy models is an important theoretical approach in the study of strongly interacting topological phases of matter. On the other hand, the primary experimental probe to such systems is via electromagnetic response. Somewhat unsatisfactorily, the current systematic construction of the lattice toy models focuses on braiding statistics and does not admit coupling to an electromagnetic background. Thus there is a mismatch between our theoretical approach and experimental probe. In this talk I introduce how to systematically incorporate electromagnetic response into the soluble lattice toy models, for a large class of abelian topological phases. [Reference: 1902.06756]

Pirsa: 19040087 Page 1/43

Pirsa: 19040087 Page 5/43

exactly soluble lattice model

an important theoretical approach to interacting topological phases

1

A large class of them is <u>systematically</u> built from the **renormalization fixed point** construction

in condensed matter

Levin-Wen string-net condensation

in mathematics

Turaev-Viro modular tensor category

in quantum computation

Kitaev quantum doubled model

Pirsa: 19040087 Page 6/43

exactly soluble lattice model

an important theoretical approach to interacting topological phases

1

A large class of them is <u>systematically</u> built from the **renormalization fixed point** construction

this framework is based on anyon braiding & fusion no natural appearance of coupling to EM background

EM background in toric code ??

(** there are examples with EM, but no systematic build-in)

Pirsa: 19040087 Page 7/43

 EM response is the primary experimental probe to interacting topological phases

 EM is missing in our systematic theoretical approach of exactly soluble lattice model

In this talk:

We systematically build-in EM background for *abelian* topological phases in (2+1)d

Pirsa: 19040087 Page 8/43

Invitation

Lidea of Fix-Point Construction & why EM is missing

Build-In EM

Outlook

Pirsa: 19040087 Page 9/43

Pirsa: 19040087

in fixed-point construction

deep IR effective theory on "lattice" from coarse-graining

a microscopic theory on a microscopic lattice

Pirsa: 19040087 Page 11/43

microscopic theory

one spin on each link

$$H = -\sum_{\text{plaq. p links l around p}} \sigma_{l}^{z}$$

$$-\sum_{
m vert.\ v\ links\ l\ around\ v}\sigma_{
m l}^a$$

microscopic theory

one spin oh each link

$$H = -\sum_{\text{plaq. p links l around p}} \prod_{\text{possible of a round p}} \sigma_{\text{l}}^{z}$$

$$-\sum_{\text{vert. v links l around v}} \sigma_{\text{l}}^{x}$$

• suppresses **Z**₂ flux (π flux)

Pirsa: 19040087 Page 13/43

microscopic theory

one spin on each link

$$H = -\sum_{\text{plaq. p links l around p}} \sigma_{l}^{z}$$

$$-\sum_{\text{vert. v links l around v}} \sigma_{l}^{x}$$

- suppresses Z2 flux (π flux)
- favors Z2 gauge equiv configs

microscopic theory

ground state
equal superposition of
gauge equiv configs
with zero gauge flux

one spin on each link

$$H = -\sum_{\text{plaq. p links l around p}} \sigma_{l}^{z}$$
$$-\sum_{\text{plaq. p links l around p}} \sigma_{l}^{x}$$

- suppresses **Z**₂ flux (π flux)
- favors Z2 gauge equiv configs

vert. v links l around v

the two terms commute (flux is gauge invariant)

When does it arise as an effective theory?

1

type-II superconducting thin film coupled to a *fictitious* **dynamical** *U*(1) gauge field

** Can equally well think of this dynamical U(1) as dynamical EM. In this talk we assume EM is background since we can manipulate it. To avoid notion conflict, we say the dynamical U(1) is fictitious for now.

(a familiar physical system stressed by Hansson, Oganesyan, Sondhi; and Wen)

Pirsa: 19040087 Page 16/43

effective theory of type-II SC thin film

deep IR ~ coarse-grain into patches

type-II SC $\,\sim\,\,$ between patches, gauge transition by 0 or π

Pirsa: 19040087 Page 17/43

effective theory of type-II SC thin film

take "dual lattice" from the patches

type-II SC $\,\sim\,\,$ between patches, gauge transition by 0 or π

hence
$$\mathcal{A}_{\mathrm{link}} = 0 \text{ or } \pi$$
 ~ Z2 "spin"

effective theory of type-II SC thin film

$$\mathcal{A}_{\mathrm{link}} = 0_{\mathrm{N}} \text{or } \pi \sim \mathbf{Z_2} \text{ "spin"}$$

 $\mathcal{A}_{ ext{link}}$ and $\mathcal{E}_{ ext{link}}$ are canonical

- lacksquare π flux costs vortex core energy
- single charge costs BCS gap energy, $div \, \mathcal{E}_{\rm link} = charge$ generates gauge transformation,

so gauge inequiv costs energy

toric code after change of variables!

in fixed-point construction

1

deep IR **effective theory** on "lattice" from coarse-graining

a microscopic theory on a microscopic lattice

We have demonstrated, in what sense is the **toric code** the **effective theory (fixed-point)** of a physical system

Pirsa: 19040087 Page 20/43

in fixed-point construction

1

deep IR effective theory on "lattice" from coarse-graining = a microscopic theory on a microscopic lattice

simple rules under further coarse-graining

consistency conditions

solubility

(Levin-Wen's philosophy of string-net)

survived in deep IR: braiding of anyons

further coarse-graining: fusion of anyons

Pirsa: 19040087 Page 21/43

"fixed-point" requires certain consistency conditions:
 Levin-Wen's string-net Hamiltonian

1

- solutions given by the math structure "tensor category":
 Turaev-Viro's state sum is the path integral of string-net
- Kitaev's quantum doubled;
 Dijkgraaf-Witten;
 fermionic versions ...

confluence of different motivations

Pirsa: 19040087 Page 22/43

Why background EM is not built in?

D

need new degree of freedom

excitations with trivial braiding but carry electric charge (e.g. electron excitation in FQH)

not really "fixed-point"

- EM background field smears macroscopically
- narrow 2π EM flux <u>invisible</u> on microscopic lattice but <u>visible</u> in deep IR limit: "narrow" 2π EM flux creates anyon

Pirsa: 19040087 Page 23/43

Why background EM is not built in?

D

in math machinery?

symmetry (global or gauge) incorporated via "grading", suited for discrete symmetry groups not continuous ones (which include EM)

Pirsa: 19040087 Page 24/43

Invitation

1

Idea of Fix-Point Construction & why EM is missing

Build-In EM

Outlook

Pirsa: 19040087 Page 25/43

In this talk: We systematically build-in EM background for abelian topological phases in (2+1)d but do these phases possess non-trivial EM properties?

Pirsa: 19040087 Page 26/43

they do!

1

continuum description of toric code phase:

doubled Chern-Simons Lagrangian

$$\frac{1}{4\pi} \left[\begin{array}{cc} a & b \end{array} \right] \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right] \ d \left[\begin{array}{c} a \\ b \end{array} \right]$$

admits EM coupling $\frac{1}{2\pi}\left[\begin{array}{cc}pA & qA\end{array}\right] \ d\left[\begin{array}{cc}a\\b\end{array}\right]$

frac charges: p/2, q/2 Hall cond: pq

coupling to EM

need new degree of freedom

excitations with trivial braiding but carry electric charge

Pirsa: 19040087 Page 28/43

coupling to EM — new degree of freedom

electric charge $q\mathbf{Z}$ on plaquette

electric charge *p***Z** on vertex

Pirsa: 19040087 Page 29/43

coupling to EM — new degree of freedom

1

underlying math

gauging 1-form **Z** symmetry

recall: gauging (0-form) Z symmetry in Villain model

Pirsa: 19040087 Page 30/43

coupling to ${\sf EM}$ — new degree of freedom

1

underlying math

gauging 1-form ${\bf Z}$ symmetry

coupling to EM — new degree of freedom

electric charge $q\mathbf{Z}$ on plaquette

electric charge *p***Z** on vertex

Pirsa: 19040087 Page 32/43

also, deal with the subtlety...

1

not really "fixed-point"

— narrow 2π EM flux <u>invisible</u> on microscopic lattice but <u>visible</u> in deep IR limit: "narrow" 2π EM flux creates anyon

after taking care of it...

Pirsa: 19040087 Page 33/43

no Hall conductivity

Hamiltonian exactly soluble (terms commute)

1

with Hall conductivity

Hamiltonian not exactly soluble (terms don't commute)

manifestation of recent theorem by Kapustin & Fidkowski

but our systematic method gives controllably soluble Hamiltonians

(non-commutativity *arbitrarily* small, i.e. arbitrarily close to "exactly" soluble)

Pirsa: 19040087 Page 34/43

some other interesting math...

1

- fermionic topological phases
 EM field as spin-c connection
- equivalence to continuum doubled Chern-Simons via Deligne-Beilinson cohomology

Pirsa: 19040087 Page 35/43

We achieve exactly or controllably soluble Hamiltonian with EM

Pirsa: 19040087 Page 36/43

some other interesting math...

1

- fermionic topological phases
 EM field as spin-c connection
- equivalence to continuum doubled Chern-Simons via Deligne-Beilinson cohomology

Pirsa: 19040087 Page 37/43

We introduced EM response into a major theoretical framework that constructs (abelian) topological phases

General math framework of continuous symmetry group in tensor category?

Pirsa: 19040087 Page 38/43

Pirsa: 19040087 Page 39/43

EM response in Kitaev honeycomb model

SU(2) non-abelian anyons
chiral edge states
bosonic cousin of Moore-Read Pfaffian state

Pirsa: 19040087 Page 40/43

New EM response?

In phases that detect Borromean rings

(as opposed to previous abelian phases that detect linked rings)

non-abelian anyons from abelian gauge fields

Pirsa: 19040087 Page 41/43

New EM response? In some fracton models

7

some fracton models (e.g. X-cube) involve stacked toric code admits abelian gauge field description in continuum

Pirsa: 19040087 Page 42/43

thank you