Title: Soft Heisenberg hair

Speakers: Daniel Grumiller

Series: Quantum Gravity

Date: April 11, 2019 - 2:30 PM

URL: http://pirsa.org/19040085

Abstract: Gravity theories naturally allow for edge states generated by non-trivial boundary-condition preserving diffeomorphisms. I present a specific set of boundary conditions inspired by near horizon physics, show that it leads to soft hair excitations of black hole solutions and discuss implications for black hole entropy.

Pirsa: 19040085

# Soft Heisenberg Hair

Daniel Grumiller

Institute for Theoretical Physics
TU Wien

PI, Seminar Talk, April 2019



Pirsa: 19040085 Page 2/42



Pirsa: 19040085 Page 3/42

# Outline Boundary charges Near horizon boundary conditions Soft Heisenberg hair and black hole entropy Generalizations and perspective Daniel Grumiller - Soft Heisenberg Hair 4/31

Pirsa: 19040085 Page 4/42

### Physics with boundaries

Science is a differential equation. Religion is a boundary condition. — Alan Turing

- Many QFT applications employ "natural boundary conditions": fields and fluctuations tend to zero asymptotically
- Notable exceptions exist in gauge theories with boundaries: e.g. in Quantum Hall effect
- Natural boundary conditions not applicable in gravity: metric must not vanish asymptotically
- Gauge or gravity theories in presence of (asymptotic) boundaries: asymptotic symmetries

Definition of asymptotic symmetries

All boundary condition preserving gauge transformations (bcpgt's) modulo trivial gauge transformations

Daniel Grumiller - Soft Heisenberg Hair

Boundary charges

6/31

Pirsa: 19040085 Page 5/42

# Asymptotic symmetries in gravity

▶ Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

Daniel Grumiller - Soft Heisenberg Hair

Boundary charges

## Asymptotic symmetries in gravity

▶ Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

r: some convenient ("radial") coordinate

 $r_b$ : value of r at boundary (could be  $\infty$ )

 $x^i$ : remaining coordinates

 $g_{\mu 
u}$ : metric compatible with bc's

Daniel Grumiller - Soft Heisenberg Hair

Boundary charges

#### Asymptotic symmetries in gravity

Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

r: some convenient ("radial") coordinate

 $r_b$ : value of r at boundary (could be  $\infty$ )

 $x^i$ : remaining coordinates

 $g_{\mu\nu}$ : metric compatible with bc's

 $\bar{g}_{\mu\nu}$ : (asymptotic) background metric

 $\delta g_{\mu\nu}$ : fluctuations permitted by bc's

 $\triangleright$  bcpgt's generated by asymptotic Killing vectors  $\xi$ :

$$\mathcal{L}_{\xi}g_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$$

typically, Killing vectors can be expanded radially

$$\xi^{\mu}(r_b, x^i) = \xi^{\mu}_{(0)}(r_b, x^i) + \text{subleading terms}$$

 $\xi_{(0)}^{\mu}(r_b, x^i)$ : generates asymptotic symmetries

subleading terms: generate trivial diffeos

Daniel Grumiller - Soft Heisenberg Hair

Boundary charges

7/31

Pirsa: 19040085

# Simple example (based on unpublished notes with Salzer) Asymptotic Rindler<sub>2</sub> spacetimes (in Eddington–Finkelstein gauge)

Consider class of 2d metrics, partially gauge-fixed

$$g_{rr}(r, u) = 0$$

$$g_{ur}(r, u) = -1$$

$$g_{uu}(r, u) = \delta g(u)r + \mathcal{O}(1)$$

expanded for large r

bcpt's generated by asymptotic Killing vectors

$$\xi = \epsilon(u)\partial_u + (\eta(u) - \epsilon'(u)r) \partial_r$$

Daniel Grumiller - Soft Heisenberg Hair

Boundary charges

8/31

Page 9/42

# Simple example (based on unpublished notes with Salzer) Asymptotic Rindler<sub>2</sub> spacetimes (in Eddington–Finkelstein gauge)

Consider class of 2d metrics, partially gauge-fixed

$$g_{rr}(r, u) = 0$$

$$g_{ur}(r, u) = -1$$

$$g_{uu}(r, u) = \delta g(u)r + \mathcal{O}(1)$$

expanded for large r

bcpt's generated by asymptotic Killing vectors

$$\xi = \epsilon(u)\partial_u + (\eta(u) - \epsilon'(u)r)\partial_r$$

asymptotic symmetry algebra ("BMS<sub>2</sub>"):

$$\left[\xi(\epsilon_1, \eta_1), \xi(\epsilon_2, \eta_2)\right]_{\text{Lie}} = \xi\left(\epsilon_1 \epsilon_2' - \epsilon_2 \epsilon_1', (\epsilon_1 \eta_2 - \epsilon_2 \eta_1)'\right)$$

Lie bracket algebra of asymptotic Killing vectors is infinite dimensional here

Daniel Grumiller - Soft Heisenberg Hair

Boundary charges

8/31

Pirsa: 19040085

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

 $\blacktriangleright$  changing boundary conditions can change physical spectrum simple example: quantum mechanics of free particle on half-line  $x\geq 0$ 

Daniel Grumiller - Soft Heisenberg Hair

Boundary charges

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

▶ changing boundary conditions can change physical spectrum simple example: quantum mechanics of free particle on half-line  $x \ge 0$  time-independent Schrödinger equation:

$$-\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi(x) = E\psi(x)$$

look for (normalizable) bound state solutions, E < 0

- Dirichlet bc's: no bound states
- Neumann bc's: no bound states

Daniel Grumiller - Soft Heisenberg Hair

Boundary charges

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

changing boundary conditions can change physical spectrum simple example: quantum mechanics of free particle on half-line  $x \geq 0$  time-independent Schrödinger equation:

$$-\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi(x) = E\psi(x)$$

look for (normalizable) bound state solutions, E < 0

- Dirichlet bc's: no bound states
- Neumann bc's: no bound states
- ► Robin bc's

$$(\psi + \alpha \psi')\big|_{x=0^+} = 0 \qquad \alpha \in \mathbb{R}^+$$

lead to one bound state

$$\psi(x)\big|_{x\geq 0} = \sqrt{\frac{2}{\alpha}} e^{-x/\alpha}$$

with energy  $E=-1/\alpha^2$ , localized exponentially near x=0

Daniel Grumiller - Soft Heisenberg Hair

Boundary charges

9/31

Pirsa: 19040085

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

- changing boundary conditions can change physical spectrum
- to distinguish asymptotic symmetries from trivial gauge trafos: either use Noether's second theorem and covariant phase space analysis or perform Hamiltonian analysis in presence of boundaries

#### Some references:

- covariant phase space: Lee, Wald '90, Iyer, Wald '94 and Barnich, Brandt '02
- review: see Compère, Fiorucci '18 and refs. therein
- canonical analysis: Arnowitt, Deser, Misner '59, Regge, Teitelboim '74 and Brown, Henneaux '86
- review: see Bañados, Reyes '16 and refs. therein

Daniel Grumiller - Soft Heisenberg Hair

Boundary charges

9/31

Pirsa: 19040085 Page 14/42

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

- changing boundary conditions can change physical spectrum
- ▶ to distinguish asymptotic symmetries from trivial gauge trafos: perform Hamiltonian analysis in presence of boundaries
- lacktriangle in Hamiltonian language: gauge generator  $G[\epsilon]$  varies as

$$\delta G[\epsilon] = \int_{\Sigma} (\text{bulk term}) \, \epsilon \, \delta \Phi - \int_{\partial \Sigma} (\text{boundary term}) \, \epsilon \, \delta \Phi$$

not functionally differentiable in general ( $\Sigma$ : constant time slice)

add boundary term to restore functional differentiability

$$\delta\Gamma[\epsilon] = \delta G[\epsilon] + \delta Q[\epsilon] \stackrel{!}{=} \int_{\Sigma} (\text{bulk term}) \, \epsilon \, \delta\Phi$$

Daniel Grumiller - Soft Heisenberg Hair

Boundary charges

canonical gauge generator generates gauge trafos on phase space

$$\delta_{\epsilon} f(\Phi) = \{ \Gamma[\epsilon], f(\Phi) \}$$

in particular:

$$\delta_{\epsilon_1}\Gamma[\epsilon_2] = \{\Gamma[\epsilon_1], \, \Gamma[\epsilon_2]\}$$

• on constraint surface  $\Gamma[\epsilon] = Q[\epsilon]$ , hence

$$\delta_{\epsilon_1}Q[\epsilon_2] = \{Q[\epsilon_1], Q[\epsilon_2]\} = Q[\epsilon_1 \circ \epsilon_2] + Z[\epsilon_1, \epsilon_2]$$

Z: possible central extension of asymptotic symmetry algebra

Canonical realization of asymptotic symmetries

Poisson (or Dirac) bracket algebra of canonical boundary charges

Daniel Grumiller - Soft Heisenberg Hair

Boundary charges

10/31

Pirsa: 19040085 Page 16/42

# Simple example: abelian Chern-Simons

abelian Chern–Simons action (on cylinder)

$$I[A] = \frac{k}{4\pi} \int_{\mathbb{R} \times \Sigma} A \wedge dA$$

- gauge trafos  $\delta_{\epsilon} A = d\epsilon$
- canonical analysis yields boundary charges (background independent)

$$Q[\epsilon] = \frac{k}{2\pi} \oint_{\partial \Sigma} \epsilon \, A$$

choice of bc's

$$\lim_{r \to \infty} A = \mathcal{J}(\varphi) \, \mathrm{d}\varphi + \mu \, \mathrm{d}t$$

preserved by  $\epsilon = \eta(\varphi) + \text{subleading}$ 

Daniel Grumiller - Soft Heisenberg Hair

Boundary charges

### Simple example: abelian Chern-Simons

abelian Chern–Simons action (on cylinder)

$$I[A] = \frac{k}{4\pi} \int_{\mathbb{R} \times \Sigma} A \wedge dA$$

- gauge trafos  $\delta_{\epsilon} A = d\epsilon$
- canonical analysis yields boundary charges (background independent)

$$\delta Q[\epsilon] = \frac{k}{2\pi} \oint_{\partial \Sigma} \epsilon \, \delta A$$

choice of bc's

$$\lim_{r \to \infty} A = \mathcal{J}(\varphi) \, \mathrm{d}\varphi + \mu \, \mathrm{d}t$$

preserved by  $\epsilon = \eta(\varphi) + \text{subleading}$ 

asymptotic symmetry algebra has non-trivial central term

$${Q[\eta_1], Q[\eta_2]} = \delta_{\eta_1} Q[\eta_2] = \frac{k}{2\pi} \oint_{\partial_{\Sigma}} \eta_2 \, \eta_1' \, \mathrm{d}\varphi$$

Fourier modes  $J_n \sim \int \mathcal{J}e^{in\varphi}$  yield  $u(1)_k$  current algebra,  $i\{J_n,\,J_m\} = \frac{k}{2}\,n\,\delta_{n+m,\,0}$ 

Daniel Grumiller - Soft Heisenberg Hair

Boundary charges

#### Edge states

see e.g. Halperin '82, Witten '89, or Balachandran, Chandar, Momen '94

- changing boundary charges changes physical state
- boundary charges (if non-trivial) thus generate edge states
- back to abelian Chern–Simons example:
  - asymptotic symmetry algebra

$$[J_n, J_m] = \frac{k}{2} n \, \delta_{n+m, 0}$$

define vacuum

$$J_n|0\rangle = 0 \quad \forall n \ge 0$$

descendants of vacuum are examples of edge states

$$|\operatorname{edge}(\{n_i\})\rangle = \prod_{\{n_i>0\}} J_{-n_i}|0\rangle$$

e.g.

$$|\text{edge}(\{1, 1, 42\})\rangle = J_{-1}^2 J_{-42} |0\rangle$$

Daniel Grumiller - Soft Heisenberg Hair

Boundary charges

#### Edge states

see e.g. Halperin '82, Witten '89, or Balachandran, Chandar, Momen '94

- changing boundary charges changes physical state
- boundary charges (if non-trivial) thus generate edge states
- back to abelian Chern–Simons example:
  - asymptotic symmetry algebra

$$[J_n, J_m] = \frac{k}{2} n \, \delta_{n+m, 0}$$

define vacuum

$$J_n|0\rangle = 0 \quad \forall n \ge 0$$

descendants of vacuum are examples of edge states

$$|\operatorname{edge}(\{n_i\})\rangle = \prod_{\{n_i>0\}} J_{-n_i}|0\rangle$$

e.g.

$$|\text{edge}(\{1, 1, 42\})\rangle = J_{-1}^2 J_{-42} |0\rangle$$

► theories with no local physical degrees of freedom can have edge states! ⇒ perhaps cleanest example of holography

Daniel Grumiller - Soft Heisenberg Hair

Boundary charges

12/31

Pirsa: 19040085

Page 20/42

# Motivation for near horizon boundary conditions Old idea by Strominger '97 and Carlip '98

Main idea

Impose existence of non-extremal horizon as boundary condition on state space

#### Motivations:

▶ Want to ask conditional questions "given a black hole, what are the probabilities for some scattering process"

Daniel Grumiller - Soft Heisenberg Hair

Near horizon boundary conditions

14/31

Pirsa: 19040085 Page 21/42

# Explicit form of near horizon boundary conditions

See Donnay, Giribet, Gonzalez, Pino '15 and Afshar et al '16

# Postulates of near horizon boundary conditions:

1. Rindler approximation

$$ds^2 = -\kappa^2 r^2 dt^2 + dr^2 + \Omega_{ab}(t, x^c) dx^a dx^b + \dots$$

 $r \to 0$ : Rindler horizon

 $\kappa$ : surface gravity

 $\Omega_{ab}$ : metric transversal to horizon

 $\dots$ : terms of higher order in r or rotation terms

Daniel Grumiller — Soft Heisenberg Hair

Near horizon boundary conditions

15/31

Pirsa: 19040085 Page 22/42

# Explicit form of near horizon boundary conditions See Donnay, Giribet, Gonzalez, Pino '15 and Afshar et al '16

#### Postulates of near horizon boundary conditions:

1. Rindler approximation

$$ds^{2} = -\kappa^{2} r^{2} dt^{2} + dr^{2} + \Omega_{ab}(t, x^{c}) dx^{a} dx^{b} + \dots$$

 $r \to 0$ : Rindler horizon

 $\kappa$ : surface gravity

 $\Omega_{ab}$ : metric transversal to horizon

 $\dots$ : terms of higher order in r or rotation terms

2. Surface gravity is state-independent

$$\delta \kappa = 0$$

3. Metric transversal to horizon is state-dependent

$$\delta\Omega_{ab} = \mathcal{O}(1)$$

4. Remaining terms fixed by consistency of canonical boundary charges

Daniel Grumiller - Soft Heisenberg Hair

Near horizon boundary conditions



Pirsa: 19040085 Page 24/42

Near horizon symmetries = "asymptotic symmetries" for near horizon bc's Restrict for the time being to  $AdS_3$  black holes (BTZ)

Simplification in 3d:

$$ds^{2} = \left[ -\kappa^{2} r^{2} dt^{2} + dr^{2} + \gamma^{2}(\varphi) d\varphi^{2} + 2\kappa \omega(\varphi) r^{2} dt d\varphi \right] \left( 1 + \mathcal{O}(r^{2}) \right)$$

▶ Map from round  $S^1$  to Fourier-excited  $S^1$ : diffeo  $\gamma(\varphi) d\varphi = d\tilde{\varphi}$ 

Daniel Grumiller — Soft Heisenberg Hair

Near horizon boundary conditions

Near horizon symmetries = "asymptotic symmetries" for near horizon bc's Restrict for the time being to  $AdS_3$  black holes (BTZ)

#### Simplification in 3d:

$$ds^{2} = \left[ -\kappa^{2} r^{2} dt^{2} + dr^{2} + \gamma^{2}(\varphi) d\varphi^{2} + 2\kappa \omega(\varphi) r^{2} dt d\varphi \right] \left( 1 + \mathcal{O}(r^{2}) \right)$$

- ▶ Map from round  $S^1$  to Fourier-excited  $S^1$ : diffeo  $\gamma(\varphi) d\varphi = d\tilde{\varphi}$
- Non-trivial diffeo!
- Canonical analysis yields

$$Q^{\pm}[\epsilon^{\pm}] \sim \oint d\varphi \, \epsilon^{\pm}(\varphi) \left( \gamma(\varphi) \pm \omega(\varphi) \right)$$

where  $\epsilon^\pm$  are functions appearing in asymptotic Killing vectors charge conservation follows from on-shell relations  $\partial_t \gamma = 0 = \partial_t \omega$  explains last word in title:  $\gamma$  and  $\omega$  are hair of black hole

Daniel Grumiller - Soft Heisenberg Hair

Near horizon boundary conditions

Near horizon symmetries = "asymptotic symmetries" for near horizon bc's Restrict for the time being to  $AdS_3$  black holes (BTZ)

#### Simplification in 3d:

$$ds^{2} = \left[ -\kappa^{2} r^{2} dt^{2} + dr^{2} + \gamma^{2}(\varphi) d\varphi^{2} + 2\kappa \omega(\varphi) r^{2} dt d\varphi \right] \left( 1 + \mathcal{O}(r^{2}) \right)$$

- ▶ Map from round  $S^1$  to Fourier-excited  $S^1$ : diffeo  $\gamma(\varphi) d\varphi = d\tilde{\varphi}$
- Non-trivial diffeo!
- Canonical analysis yields

$$Q^{\pm}[\epsilon^{\pm}] \sim \oint d\varphi \, \epsilon^{\pm}(\varphi) \left( \gamma(\varphi) \pm \omega(\varphi) \right)$$

Near horizon symmetry algebra Fourier modes  $\mathcal{J}_n^{\pm}=Q^{\pm}[\epsilon^{\pm}=e^{in\varphi}]$ 

$$[\mathcal{J}_n^{\pm}, \, \mathcal{J}_m^{\pm}] = \frac{1}{2} \, n \, \delta_{n+m, \, 0}$$

Isomorphic to Heisenberg algebras plus center

$$[X_n, P_m] = i \, \delta_{n,m} \qquad [P_0, X_n] = 0 = [X_0, P_n]$$

$$P_0 = \mathcal{J}_0^+ + \mathcal{J}_0^-, X_n = \mathcal{J}_n^+ - \mathcal{J}_{-n}^-, P_n = 2i/n(\mathcal{J}_{-n}^+ + \mathcal{J}_n^-) \text{ for } n \neq 0$$

Daniel Grumiller - Soft Heisenberg Hair

Near horizon boundary conditions

17/31

Pirsa: 19040085

# Unique features of near horizon boundary conditions

- 1. All states allowed by bc's have same temperature
- All states allowed by bc's are regular
   (in particular, they have no conical singularities at the horizon in the Euclidean
   formulation)

By contrast: for given temperature not all states in theories with asymptotically AdS or flat space bc's are free from conical singularities; usually a unique black hole state is picked

Daniel Grumiller - Soft Heisenberg Hair

Near horizon boundary conditions

18/31

Pirsa: 19040085 Page 28/42

## Unique features of near horizon boundary conditions

- 1. All states allowed by bc's have same temperature
- All states allowed by bc's are regular (in particular, they have no conical singularities at the horizon in the Euclidean formulation)
- 3. There is a non-trivial reducibility parameter (= Killing vector)
- 4. Technical feature: in Chern-Simons formulation of 3d gravity simple expressions in diagonal gauge

$$A^{\pm} = b^{\mp 1} (d+a^{\pm}) b^{\pm 1}$$

$$a^{\pm} = L_0 ((\gamma(\varphi) \pm \omega(\varphi)) d\varphi + \kappa dt)$$

$$b = \exp [(L_+ - L_-) r/2]$$

 $L_{\pm}$  are  $sl(2,\mathbb{R})$  raising/lowering generators  $L_0$  is  $sl(2,\mathbb{R})$  Cartan subalgebra generator

Daniel Grumiller - Soft Heisenberg Hair

Near horizon boundary conditions

18/31

Pirsa: 19040085

### Soft Heisenberg hair for BTZ

Black flower excitations = hair of black holes
 Algebraically, excitations from descendants

|black flower
$$\rangle \sim \prod_{n_i^{\pm} > 0} \mathcal{J}_{-n_i^{+}}^{+} \mathcal{J}_{-n_i^{-}}^{-} |\text{black hole}\rangle$$

- What is energy of such excitations?
- Near horizon Hamiltonian = boundary charge associated with unit time-translations

$$H = Q[\partial_t] = \kappa P_0$$

commutes with all generators  $\mathcal{J}_n^\pm$ 

- ightharpoonup H-eigenvalue of black hole
- ▶ Black flower excitations do not change energy of black hole!

Black flower excitations = soft hair in sense of Hawking, Perry and Strominger '16

Daniel Grumiller - Soft Heisenberg Hair

Soft Heisenberg hair and black hole entropy

20/31

Pirsa: 19040085 Page 30/42

### New entropy formula

Express entropy in terms of near horizon charges:

$$S=2\pi P_0$$

- ► Entropy = parity inv. combination of near horizon charge zero modes
- Obeys simple near horizon first law

$$\delta S = \frac{2\pi}{\kappa} \, \delta(\kappa P_0) \qquad \Rightarrow \qquad T \, \delta S = \delta H$$

with Hawking-Unruh-temperature

$$T = \frac{\kappa}{2\pi}$$

 $\delta$  refers to any variation of phase space variables allowed by the boundary conditions

Given our soft Heisenberg hair, attack now entropy questions

- 1. Why only semi-classical input for entropy?
- 2. What are microstates?
- 3. Semi-classical construction of microstates?
- 4. Does counting of microstates reproduce  $S_{\rm BH}$ ?

Regarding 1. and 3.: may expect decoupling of scales so that description of microstates does not need info about UV completion, but rather only some semi-classical "Bohr-like" input

Evidence for this: universality of BH entropy for large black holes

$$S_{\mathrm{BH}} = \frac{A}{4G} + \dots$$

Daniel Grumiller — Soft Heisenberg Hair

Soft Heisenberg hair and black hole entropy

Given our soft Heisenberg hair, attack now entropy questions

- 1. Why only semi-classical input for entropy?
- 2. What are microstates?
- 3. Semi-classical construction of microstates?
- 4. Does counting of microstates reproduce  $S_{\mathrm{BH}}$ ?

Assume it is possible to construct microstates for large black holes semi-classically using soft-hair excitations

Possible obstacles:

Daniel Grumiller — Soft Heisenberg Hair

Soft Heisenberg hair and black hole entropy

22/31

Pirsa: 19040085 Page 33/42

Given our soft Heisenberg hair, attack now entropy questions

- 1. Why only semi-classical input for entropy?
- 2. What are microstates?
- 3. Semi-classical construction of microstates?
- 4. Does counting of microstates reproduce  $S_{\rm BH}$ ?

Assume it is possible to construct microstates for large black holes semi-classically using soft-hair excitations

#### Possible obstacles:

► TMI: no upper bound on soft hair excitations

Daniel Grumiller - Soft Heisenberg Hair

Soft Heisenberg hair and black hole entropy

22/31

Pirsa: 19040085 Page 34/42

Given our soft Heisenberg hair, attack now entropy questions

- 1. Why only semi-classical input for entropy?
- 2. What are microstates?
- 3. Semi-classical construction of microstates?
- 4. Does counting of microstates reproduce  $S_{\rm BH}$ ?

Assume it is possible to construct microstates for large black holes semi-classically using soft-hair excitations

#### Possible obstacles:

- ► TMI: no upper bound on soft hair excitations
- possible resolution: cut-off on soft hair spectrum!
- ► TLI Mirbabayi, Porrati '16; Bousso, Porrati '17; Donnelly, Giddings '17: for asymptotic observer no information from soft hair states

Daniel Grumiller - Soft Heisenberg Hair

Soft Heisenberg hair and black hole entropy

22/31

Pirsa: 19040085 Page 35/42

Fluff proposal (with Afshar, Sheikh-Jabbari '16 and also with Yavartanoo '17)
Semi-classical BTZ black hole microstates as near horizon descendants of vacuum

Highest weight vacuum  $|0\rangle$ 

$$\mathcal{J}_n^{\pm}|0\rangle = 0 \quad \forall n \ge 0$$

Black hole microstates:

$$|\mathcal{B}(\{n_i^{\pm}\})\rangle = \prod_{\{n_i^{\pm}>0\}} \left(\mathcal{J}_{-n_i^{+}}^{+} \cdot \mathcal{J}_{-n_i^{-}}^{-}\right) |0\rangle$$

subject to spectral constraint depending on black hole mass M and angular momentum J (measured by asymptotic observer)

$$\sum_{i} n_i^{\pm} = \frac{c}{2} \left( M \pm J \right)$$

Daniel Grumiller - Soft Heisenberg Hair

Soft Heisenberg hair and black hole entropy

Fluff proposal (with Afshar, Sheikh-Jabbari '16 and also with Yavartanoo '17)
Semi-classical BTZ black hole microstates as near horizon descendants of vacuum

Highest weight vacuum  $|0\rangle$ 

$$\mathcal{J}_n^{\pm}|0\rangle = 0 \quad \forall n \ge 0$$

Black hole microstates:

$$|\mathcal{B}(\{n_i^{\pm}\})\rangle = \prod_{\{n_i^{\pm}>0\}} \left(\mathcal{J}_{-n_i^{+}}^{+} \cdot \mathcal{J}_{-n_i^{-}}^{-}\right) |0\rangle$$

subject to spectral constraint depending on black hole mass M and angular momentum J (measured by asymptotic observer)

$$\sum_{i} n_i^{\pm} = \frac{c}{2} \left( M \pm J \right)$$

derived from Bohr-type quantization conditions

- ightharpoonup quantization of central charge c=3/(2G) in integers
- quantization of conical deficit angles in integers over c
- black hole/particle correspondence
   (black hole = gas of coherent states of particles on AdS<sub>3</sub>)

Daniel Grumiller - Soft Heisenberg Hair

Soft Heisenberg hair and black hole entropy

23/31

Pirsa: 19040085 Page 37/42

#### Generalizations

Near horizon boundary conditions works in any dimension, for any local geometry, for any reasonable theory\* (with metric) and for any type of non-extremal horizon

\* theories checked so far: Einstein gravity with negative cosmological constant  $(d \geq 3)$  Einstein gravity with vanishing cosmological constant  $(d \geq 3)$  higher spin gravity (d=3), principal embedding of sl(2)) various massive gravity theories (d=3)

Daniel Grumiller - Soft Heisenberg Hair

Generalizations and perspective

26/31

Pirsa: 19040085 Page 38/42

#### Generalizations

- Near horizon boundary conditions works in any dimension, for any local geometry, for any reasonable theory (with metric) and for any type of non-extremal horizon
- Soft Heisenberg hair works for Einstein gravity, higher derivative gravity and higher spin gravity in three dimensions and Einstein gravity in higher dimensions

Daniel Grumiller - Soft Heisenberg Hair

Generalizations and perspective

26/31

Pirsa: 19040085 Page 39/42

#### Generalizations

- Near horizon boundary conditions works in any dimension, for any local geometry, for any reasonable theory (with metric) and for any type of non-extremal horizon
- Soft Heisenberg hair works for Einstein gravity, higher derivative gravity and higher spin gravity in three dimensions and Einstein gravity in higher dimensions
- Entropy formula works for Einstein gravity, higher derivative gravity and higher spin gravity in three dimensions and Einstein gravity in higher dimensions\*

$$\{Q_{lm}, P_{l'm'}\} = \frac{1}{8\pi G} \delta_{ll'} \delta_{mm'} \qquad l > 0 \qquad \{P_{00}, \bullet\} = 0$$

 $Q_{lm}$ : spherical harmonics of area preserving shear deformations  $P_{lm}$ : spherical harmonics of near horizon supertranslations Entropy given by  $S=2\pi\,P_{00}$ 

Kerr has additional generators: area preserving twist deformations

Daniel Grumiller - Soft Heisenberg Hair

Generalizations and perspective

<sup>\*</sup> for instance, for Schwarzschild

#### Outlook

Take-away messages:

- ▶ Near horizon boundary conditions useful for black hole description
- Soft Heisenberg hair generic consequence
- ▶ Universal entropy formula depends only on (semi-)classical input

$$S=2\pi P_0$$

Semi-classical microstate construction may work (at least for BTZ)

$$|\mathcal{B}(\{n_i^{\pm}\})\rangle = \prod_{\{n_i^{\pm}>0\}} \left(\mathcal{J}_{-n_i^+}^+ \cdot \mathcal{J}_{-n_i^-}^-\right) |0\rangle \qquad \sum_i n_i^{\pm} = \text{fixed by } M, J$$

Daniel Grumiller - Soft Heisenberg Hair

Generalizations and perspective



Pirsa: 19040085