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Abstract: In the usual paradigm of quantum error correction, the information to be protected can be encoded in a system of abstract qubits or
modes.& nbsp; But how does this work for physical information, which cannot be described in this way?& nbsp; Just as direction information cannot
be conveyed using a sequence of words if the parties involved do not share a reference frame, physical quantum information cannot be conveyed
using a sequence of qubits or modes without a shared reference frame.& nbsp; Covariant quantum error correction is a procedure for protecting such
physical information against noise in such a way that the encoding and decoding operations transform covariantly with respect to an external
symmetry group. In thistalk, we'll study covariant QEC, and we will see that there do not exist finite dimensional quantum codes that are covariant
with respect to continuous symmetries.& nbsp; Conversely, we'll see that there do exist finite codes for finite groups, and continuous variable (CV)
codes for continuous groups.& nbsp; This leads to a CV method of circumventing the Eastin-Knill theorem.& nbsp; By relaxing our requirements to
allow for only approximate error correction and covariance, we'll find afundamental tension between a code's ability to approximately correct errors
and covariance with respect to a continuous symmetry.& nbsp; In this way, welll arrive at an approximate version of the Eastin-Knill theorem, and
we'll end by learning what covariant QEC tells us about continuous symmetries in AAS/CFT, among other applications.& nbsp;
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* Error correction of quantum reference frame information
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 Application to AdS/CFT and symmetries in quantum gravity
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& REFERENCE FRAME QEC
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REFERENCE
FRAME

QUANTUM ERROR CORRECTION

Abstract classical information can be described using a

sequence of symbols (e.g, 0,1)

Abstract quantum information can be stored systems of

qubits (or qudits, modes, etc.)

Physical information is any information that cannot be

described in this abstract way (e.g, reference frames)
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SHARED
FRAMES

Alice wants to convey some "directional”
information to Bob (e.g, the rotation axis of a

gyroscope.)

Alice measures the the vector and describes
the components to Bob in words

Bob can then create a gyroscope spinning
along the same axis
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w

NO COMMON
REFERENCE
FRAME

Now suppose Alice and Bob do not share a
common reference frame

By sending a string of words to describe the
vector, Bob will create the wrong vector

Alice and Bob fail this task.

What can we do in this situation?

What if the channel is noisy?

ﬂ‘ REFERENCE FRAME QEC
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NO COMMON i
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FRAME

Now suppose Alice and Bob do not share a
common reference frame

O

w

o

g By sending a string of words to describe the

é vector, Bob will create the wrong vector

T

w

9 Alice and Bob fail this task.

w

o

m ~~~~~~

i What can we do in this situation? T ””””””””””””””””

(- 4 )
e dog

% What if the channel is noisy? What if this transmission is noisy! Can we correct errors!
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What if this transmission is noisy! Can we correct errors!

Yes! Use a classical repetition code.
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QUANTUM
REFERENCE
FRAMES

Suppose now that the information Alice wants
to send is quantum (e.g, a spin)

Is a quantum error correction scheme for this
type of information possible?

In which frame do we encode and decode!

In full generality, Alice and Bob are related by
an unknown element of a symmetry group G

e.g., the rotation group SO(3) for reference
frames, and U( ) for a shared time standard
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REFERENCE FRAME QEC

* In full generality, Alice and Bob are related by an unknown element of a symmetry group G

* The protocol we wish to accomplish is:

a) Alice encodes an unknown quantum state in her lab
b) The encoded state is sent to bob and subjected to noise
¢) Bob receives the state with an unknown unitary applied

d) Bob applies a G-independent decoding in his lab
e) The decoded state can be verified against Alice’s input

f) & )
®

Decoding

(a)

f—l Encoding II -x---

Alice

& REFERENCE FRAME QEC
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REFERENCE FRAME QEC

* In full generality, Alice and Bob are related by an unknown element of a symmetry group G

* The protocol we wish to accomplish is:

a) Alice encodes an unknown quantum state in her lab
b) The encoded state is sent to bob and subjected to noise
c) Bob receives the state with an unknown unitary applied

d) Bob applies a G-independent decoding in his lab
e) The decoded state can be verified against Alice’s input

(f) &
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Alice

ﬂ‘ REFERENCE FRAME QEC

Pirsa: 19040083 Page 21/81



REFERENCE FRAME QEC

* In full generality, Alice and Bob are related by an unknown element of a symmetry group G

* The protocol we wish to accomplish is:
a) Alice encodes using €4 to get the encoded state €4 (pin) = 0123

b) Spin jis erased, but Bob can infer which system was erased.

) Bob receives the state Tr;(U; ® Uz ® U;g,()‘lnglT ® UQT ® U;r) in his frame, where U; = U;(R) is the

O
3 unitary representation of the unknown rotation mapping Alice’s frame to Bob's frame.
w
g d) Bob decodes using R j to get R;[Tr; (U1 ® Uz ® U:;S(pin)UIT ® UQT ® U;)] = Pin
: e) Pin is sent through a perfect channel to Alice for verification
O
é f) Success is claimed if Pin = inpinUiL , so that the final state is the same as Alice’s input state in her frame.
w (e)
TS (f &
o °
(a) J
% ﬁ'—[Encoding'L 8- ()
Alice ®) Bob
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COVARIANT QEC
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COVARIANT

QUANTUM ERROR CORRECTION

We want to find error correcting encodings that are

covariant with respect to a symmetry group G

It shouldn't matter whether we transform and then

encode, or encode and then transform

EUimpinU]) = Uy ® Uy ® Us E(pin) Ul @ U @ U

in

In principle, this places harsh constraints on £

Page 23/81



COVARIANT QEC

An encoding £ from a logical input to n physical systems is covariant if

g(UinpinUiL) — U®n8(pin)UT®n

The encoding operation commutes with the action of the symmetry group G.

This requirement places severe constraints on &, and in principle such a map need not exist

If a covariant encoding does exist, it means we can correct errors:

R;[Tr;(E(pin))] = pin

It turns out that the existence of a covariant code for a group G implies that one can error correct
% physical information that transforms under G.

COVARIANT QEC
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COVARIANT QEC
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REFERENCE FRAME QEC

COVARIANT QEC

* Success condition: * |f a covariant code exists:

R (Te; (U EA(U nlUin) UT®™)) = fin E(UinpinU},) = UP"E (pin) U™
ﬁin = inpinUiL Rj ['Tr.? (g(pm))] = Pin
* If reference frame QEC is possible, we * Then using this code for reference
can construct a covariant code by frame QEC gives the success
averaging over the group G (e.g, condition

average over all rotations)
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REFERENCE FRAME QEC

¥ When are these possible?

W =7
(b4
i

COVARIANT QEC

* Success condition: * |f a covariant code exists:

R (Te; (U EA(U, nlin) UT®™)) = fin E(UinpinUf,) = US™E (pin) U™
ﬁin = inpinUiL Rj ['I’I'? (g(pm))] = Pin
* If reference frame QEC is possible, we * Then using this code for reference
can construct a covariant code by frame QEC gives the success
averaging over the group G (e.g, condition

average over all rotations)

These are equivalent
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RESULTS

EXISTENCE OF COVARIANT QUANTUM CODES

Symmetry group:

Code dimension:

Finite dimensional code

COVARIANT QEC

Infinite dimensional code

o
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Lie group
(continuous symmetry)

Finite group
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SKETCH OF NO-GO THEOREM

Continuous symmetry (e.g, Lie Group), with at least one infinitesimal generator and conserved charge

Logical generator Iy, and physical generator T4, assumed to be nontrivial

On the physical space, the generator is a sum of local terms T4 = Z T;

1

Physical subsystem | is erased and given to the environment

The environment can measure T; and learn some information about the charge

But for an erasure correcting code, each reduced state p; should be independent of the input

—

COVARIANT QEC

)

“
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Physical subsystem | is erased and given to the environment

v
w
E’ * The environment can measure T; and learn some information about the charge
5 * But for an erasure correcting code, each reduced state £, should be independent of the input
4
g
S —
V)
1) DO
o— £ —O
¥ —0
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1

Physical subsystem | is erased and given to the environment

Logical generator Iy, and physical generator T4, assumed to be nontrivial

On the physical space, the generator is a sum of local terms T4 = Z T;

COVARIANT QEC
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“
0
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SKETCH OF NO-GO THEOREM

Continuous symmetry (e.g, Lie Group), with at least one infinitesimal generator and conserved charge

The environment can measure T; and learn some information about the charge

But for an erasure correcting code, each reduced state p; should be independent of the input

V)
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SKETCH OF NO-GO THEOREM

Continuous symmetry (e.g, Lie Group), with at least one infinitesimal generator and conserved charge

Logical generator T, and physical generator 1’4, assumed to be nontrivial

On the physical space, the generator is a sum of local terms T'y = Z T;

1

Physical subsystem | is erased and given to the environment

The environment can measure T; and learn some information about the charge

But for an erasure correcting code, each reduced state P; should be independent of the input

—

— & — R | ¥
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SKETCH OF NO-GO THEOREM

Continuous symmetry (e.g, Lie Group), with at least one infinitesimal generator and conserved charge

Logical generator T, and physical generator 1’4, assumed to be nontrivial

On the physical space, the generator is a sum of local terms T'y = Z T;

1

Physical subsystem | is erased and given to the environment

The environment can measure T; and learn some information about the charge

But for an erasure correcting code, each reduced state P; should be independent of the input

' f_. T @
)
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COVARIANT QEC

“
0

Pirsa: 19040083 Page 33/81



SKETCH OF NO-GO THEOREM

Continuous symmetry (e.g, Lie Group), with at least one infinitesimal generator and conserved charge

Logical generator T, and physical generator 1’4, assumed to be nontrivial

On the physical space, the generator is a sum of local terms T4 = Z T;

(3

Physical subsystem | is erased and given to the environment

The environment can measure T and learn some information about the charge

But for an erasure correcting code, each reduced state P; should be independent of the input
const; = Tr(Tip;) = Tr(TiE(pin)) = Tr(ET(T}) pin) Vpin
— ENT) x I = EV(T4) x I

COVARIANT QEC

To avoid a contradiction, the generators must be trivial

TLO(I

“
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INFINITE DIMENSIONAL CODES

* To see that it a covariant code possible, we return to the reference frame error correction picture:

ﬂ REFERENCE FRAME QEC
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INFINITE DIMENSIONAL CODES

* To see that it a covariant code possible, we return to the reference frame error correction picture:

* Alice encodes using her favourite (non-covariant) quantum code

>€
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INFINITE DIMENSIONAL CODES
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INFINITE DIMENSIONAL CODES

* To see that it a covariant code possible, we return to the reference frame error correction picture:

* Alice encodes using her favourite (non-covariant) quantum code

* Alice appends a classical gyroscope encoding her reference frame

& REFERENCE FRAME QEC
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INFINITE DIMENSIONAL CODES

* To see that it a covariant code possible, we return to the reference frame error correction picture:

* Alice encodes using her favourite (non-covariant) quantum code

* Alice appends a classical gyroscope encoding her reference frame
* Since noise can happen to any subsystem, including the gyroscope, Alice actually just sends tweo gyroscopes
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INFINITE DIMENSIONAL CODES

To see that it a covariant code possible, we return to the reference frame error correction picture:

Alice encodes using her favourite (non-covariant) quantum code

Alice appends a classical gyroscope encoding her reference frame
* Since noise can happen to any subsystem, including the gyroscope, Alice actually just sends tweo gyroscopes

Bob receives the physical systems, measures the gyroscope, and aligns his reference frame with Alice

--..______\_-__-.17 4
v

O
D> &

ﬂ‘ REFERENCE FRAME QEC

*H‘CTO“Q‘

2% X )
/
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INFINITE DIMENSIONAL CODES

To see that it a covariant code possible, we return to the reference frame error correction picture:

Alice encodes using her favourite (non-covariant) quantum code

Alice appends a classical gyroscope encoding her reference frame
* Since noise can happen to any subsystem, including the gyroscope, Alice actually just sends tweo gyroscopes

Bob receives the physical systems, measures the gyroscope, and aligns his reference frame with Alice

oo

©
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INFINITE DIMENSIONAL CODES

To see that it a covariant code possible, we return to the reference frame error correction picture:

Alice encodes using her favourite (non-covariant) quantum code

Alice appends a classical gyroscope encoding her reference frame
* Since noise can happen to any subsystem, including the gyroscope, Alice actually just sends tweo gyroscopes

Bob receives the physical systems, measures the gyroscope, and aligns his reference frame with Alice
Bob )

Qe
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INFINITE DIMENSIONAL CODES

To see that it a covariant code possible, we return to the reference frame error correction picture:

Alice encodes using her favourite (non-covariant) quantum code

Alice appends a classical gyroscope encoding her reference frame
* Since noise can happen to any subsystem, including the gyroscope, Alice actually just sends tweo gyroscopes

Bob receives the physical systems, measures the gyroscope, and aligns his reference frame with Alice

Bob then applies a non-covariant encoding Bob

Dgn R
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INFINITE DIMENSIONAL CODES

To see that it a covariant code possible, we return to the reference frame error correction picture:

Alice encodes using her favourite (non-covariant) quantum code

Alice appends a classical gyroscope encoding her reference frame
* Since noise can happen to any subsystem, including the gyroscope, Alice actually just sends tweo gyroscopes

Bob receives the physical systems, measures the gyroscope, and aligns his reference frame with Alice

Bob then applies a non-covariant encoding Bob

> & R P

ﬂ‘ REFERENCE FRAME QEC
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INFINITE DIMENSIONAL CODES

* Infinite dimensional systems are needed to perfectly describe Alice’s reference frame in the gyroscope

* Jo find the covariant quantum code:

« Let He = span{|g)} for all g€ G suchthat  U(g) |h) = |gh)

% - Non-covariant encoding &y and reference frame gyroscope Ancilla |e)e| ® |e)e]
% . Encoded state £y(pim) ® |e)e|®”
g + In Bob's frame: U (9)**&0[UT (9)pinlU (9)]U (9)** @ |g)(g|**
(v
* The covariant code is made by averaging over the group G:
£ Epw) = [ _dsU@) &l @)pul 0)U(0)/ @ o)l
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EXPLICIT EXAMPLE: ROTOR CODE

* Rotor: compact ‘position’ observable, and discrete momentum observables

N

*

/

COVARIANT QEC
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EXPLICIT EXAMPLE: ROTOR CODE

* Rotor: compact ‘position’ observable, and discrete momentum observables

Z
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EXPLICIT EXAMPLE: ROTOR CODE

* Rotor: compact ‘position’ observable, and discrete momentum observables
R

COVARIANT QEC
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EXPLICIT EXAMPLE: ROTOR CODE

* Rotor: compact ‘position’ observable, and discrete momentum observables

Z

COVARIANT QEC
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EXPLICIT EXAMPLE: ROTOR CODE

* Rotor: compact ‘position’ observable, and discrete momentum observables

Y

/

111

T, YEZ

COVARIANT QEC

“
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* Isometric encoding Ey(1)(p) = E',_j(l)pE';'](l) givenby Eyay = Z | =3y, =z + ¥, 2(z + Y))103 (Z;,
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EXPLICIT EXAMPLE: ROTOR CODE

* Rotor: compact ‘position’ observable, and discrete momentum observables

Y

/

111

T, YEZ

COVARIANT QEC

« Covariant writ U(1) which acts as e***

“
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* Isometric encoding Ey(1)(p) = E',_j(l)pE';'](l) givenby Eyay = Z | =3y, =z + ¥, 2(z + Y))103 (Z;,
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Covariance: OTOR CODE

Pugs (lin €05 n observables
— —T +1 2(.13 + Y)hes3 in
EU(‘l) U;Ln-"- Z \ 3y: T +Y
— z \—3’9‘, —x +Y, ‘2(3: + y))].'ZS in ——— )
x,yEL —
S o |3y, T+ 2z + Y23 lin E—
P Z i
rge: i0(—3y —z+Y +2(z+y)) \.-*3’9, —x+Y, ‘2(1: + y))123 ( ‘m
= &
gy k . . T\,
g et Phas ey = 37 -8y, —2 + 3,2 + Y)hias (@l
] x,YyEL
z,yEL
_ U, @U2®@Us Eu@
h
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* No. Eastin-Knill:

* In our language, set G = U(dy,) and ask if £(UpU]))

UL @@=

£

_—
e

e

COVARIANT QEC

EASTIN-KNILL THEOREM

* Can you implement a universal set of encoded gates transversally!?

For any finite quantum error
correcting code:

The logical group
generated by transversal
physical gates is finite.

Tp——

£

—e U,
—e U,

_. DT%

* Our no-go theorem reproduces the main thrust of Eastin-Knill = no, there are no such codes

% * We can circumvent the theorem using infinite dimensional systems!

Eastin, Bryan, and Emanuel Knill. "Restrictions on transversal encoded quantum gate sets." Physical review letters 102,11 (2009)

Pirsa: 19040083

nthe ability of a quantum code to detect an arbitrary error on any single physical subsysterrrl
I_is incompatible with the existence of a universal, transversal encoded gate set for the code.;l

= US™ E(p)UNE™ Are there U(dy,) covariant codes?
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APPROXIMATE QEC

2
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APPROXIMATE

QUANTUM ERROR CORRECTION

What if we only need to recover approximately?

What if we only need approximate covariance?

Can we find an approximate Eastin-Knill Theorem?

- |
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20

MEASURES

* We need to quantify how poorly an approximate code can recover

APPROXIMATE QEC

X
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20

MEASURES

* We need to quantify how poorly an approximate code can recover

* State fidelity: F(p,0) = |vpVolh

APPROXIMATE QEC

2
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20

MEASURES

* We need to quantify how poorly an approximate code can recover

* State fidelity: F(p,0) = ||l\/pVel
* Induces a channel fidelity: Fi(K,K') = FQ((IC ® 1)(|¢)9]), (K' ® ]1)(|¢5)<¢|))

APPROXIMATE QEC

Q
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MEASURES

We need to quantify how poorly an approximate code can recover

* State fidelity: F(p,0) = ||l\/pVel
* Induces a channel fidelity: Fi(K,K') = FQ((IC ® 1)(|¢)9]), (K' ® ]1)(|¢5)<¢|))

Define average entanglement fidelity F2(K) = (f?3| (K® ]1)(|q3)((;3|) |fig>

APPROXIMATE QEC

Q
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MEASURES

We need to quantify how poorly an approximate code can recover

* State fidelity: F(p,0) = ||l\/pVel
* Induces a channel fidelity: Fi(K,K') = FQ((IC ® 1)(|¢)e]), (K' ® ]1)(|¢5)<¢|))

Define average entanglement fidelity F2(K) = <f33| (K® ]1)(|fig><fig|) |fig>

Define worst case fidelity Frost(K) = HI};;I (o] (K@ 1)(|¢)¢]) |#)

APPROXIMATE QEC

Q

Pirsa: 19040083
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MEASURES

We need to quantify how poorly an approximate code can recover

* State fidelity: F(p,0) = ||l\/pVel
o °* Induces a channel fidelity: Fﬁp}(’C, K') = FQ((’C ® 1)(|¢)l), (K’ ® ]1)(|¢5)<¢|))
w
o
E * Define average entanglement fidelity F2(K) = <f33| (K® ]1)(|fig><fig|) |fig>
z
2 * Define worst case fidelity Frost(K) = n|1;>n (o] (K@ 1)(|¢)¢]) |#)
m C
o
q
* Define the quality of the code: fNo&) = e F(RoNo§&)
~

Pirsa: 19040083
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APPROXIMATE QEC

Q

MEASURES

We need to quantify how poorly an approximate code can recover

State fidelity: F(p,0) = |vpVolh

Induces a channel fidelity Fy (K, K') = F2((K @ 1) (o)), (K'® n>(|¢><¢|>)

Define average entanglement fidelity ~ F2(K) = (6| (K ® 1)(|)4]) |4) AZ“"‘” k)
Define worst case fidelity Frost(K) = min (@] (K @ 1)(|¢X]) |¢) F(K) = F(K,1)
Define the quality of the code: fNo&) =maxF(RoNo&)

Define the error parameter eNo&)=+1— f2(No&)
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APPROXIMATE QEC

Q

MEASURES

We need to quantify how poorly an approximate code can recover

State fidelity: F(p, o) = ||v/pval:

Induces a channel fidelity Fy (K, K') = F2((K @ 1)(le)gl), (K' @ 1)(9Xe))

Define average entanglement fidelity ~ Fi (K) = (3] (K ® 1)(|$)¢l) |¢) 9= ﬁz"” e
Define worst case fidelity Frost(K) = min (@] (K @ 1)(|¢X]) |¢) F(K) = F(K,1)
Define the quality of the code: fNo&) =max F(RoNo&)

Define the error parameter [ eNoE)=+/1-f2(No&) ]
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APPROXIMATE QEC

Q

MEASURES

We need to quantify how poorly an approximate code can recover

State fidelity: F(p,0) = |lvVpVolh

Induces a channel fidelity Fy (K, K') = F2((K @ 1)(le)gl), (K' @ 1)(9Xe))

Define average entanglement fidelity ~ Fi (K) = (3] (K ® 1)(|$)¢l) |¢) 9= ﬁz"” e
Define worst case fidelity Frost(K) = min (@] (K @ 1)(|¢X]) |¢) F(K) = F(K,1)
Define the quality of the code: fNo&) =max F(RoNo&)

Define the error parameter [ eNo&)=+/1-f2A(No&) ] [ Good codes ; Z (1) ]
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EX: 3-ROTOR APPROXIMATE CODE

Recall the covariant 3-rotor code: Eyay = Z | =3y, == + y, 2(z + y)), 23 (/i
x,YyEZ

Truncate the sum with a hard cutoff:

9

w

o

w

B | o

¥ °* Weight terms with a Gaussian envelope!?

%

(0]

o

o

<

* In both cases, the encoding remains covariant, but error correction suffers:

S
~S
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EX: 3-ROTOR APPROXIMATE CODE

Recall the covariant 3-rotor code: Eyay = Z | =3y, == + ¥, 2(z + y)), 23 (/i
x,YyEZ

h m
Truncate the sum with a hard cutoff: vy = A o 2m 1 Z Z | =3y, =z + y,2(x + y))193 (z],

T=—hy=-m

Weight terms with a Gaussian envelope!?

APPROXIMATE QEC

In both cases, the encoding remains covariant, but error correction suffers:

2
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EX: 3-ROTOR APPROXIMATE CODE

Recall the covariant 3-rotor code: Eyay = Z | =3y, == + ¥, 2(z + y)), 23 (/i
x,YyEZ

Truncate the sum with a hard cutoff: ~g‘(1) =4/ — 2m 1 Z Z | =3y, —z + y,2(x + y))193 (z|,

0] z=—hy=-m
w

o

w

E | | | _ 1 2

T * Weight terms with a Gaussian envelope? Efj;) = - Z e”w? | -3y, —z + vy, 2(z + Y)ha2s (Tlin
X T, y="7

o i

o

o

<

* In both cases, the encoding remains covariant, but error correction suffers:

S
N
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EX: 3-ROTOR APPROXIMATE CODE

Recall the covariant 3-rotor code: Eyay = Z | =3y, =z + ¥, 2(z + y)), 23 (Tl;,
x,YyEZ

Truncate the sum with a hard cutoff: ~g‘(1) =4/ — 2m 1 z Z | =3y, —z + y,2(x + y))193 (z|,

9 r=—hy=—m

w

(o

u : :

g * Weight terms with a Gaussian envelope? Eg;’(l) = — Z e”w? | -3y, —z + vy, 2(z + Y)has (Zlin

5 z,y=7

-2

o

<

* In both cases, the encoding remains covariant, but error correction suffers:
1 h ~ [ h h/w ...... <e No g'-'u h

z ﬁa S €Eworst (NO g'm) S; \ﬁ a 211'1(1”/]7) ~ WOISt( ) - 2'w
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MAIN THEOREM (one of several)
1
—e 1)
L £ ——
T, @—— [ ——e 7, 1.- > noise channel N/
V(v —e '

¢ T,
O
w
o
w
B The error of the isometric encoding £(-) = V(-)V1 is bounded below by
z
X 1 AT e~ ()
) L Good codes:
2 Eworst (N 0 E) > a1
E wors ( ) 2n max; ATZ !

(N 0&) > 1|7y — Tr(Tr)1r/di|l1/(2dL)
~ n max; AT;

AT; = max(eig(7T;)) — min(eig(7;))
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EX: 3-ROTOR APPROXIMATE CODE

Recall the covariant 3-rotor code: Eyay = Z | =3y, =z + ¥, 2(z + y)), 23 (/i
x,YyEZ

Truncate the sum with a hard cutoff: ~g‘(1) =4/ — 2m 1 z Z | =3y, =z + y,2(x + y))193 (z|,

) r=—hy=-m

w

(o

u : :

g * Weight terms with a Gaussian envelope? Eg;’(l) = — Z e ww? | =3y, =z + y, 2(z + ¥))103 (Tl;,

5 z,y=7

o

[

<

* In both cases, the encoding remains covariant, but error correction suffers:
1 h ~ [ h i/_w__ < e NoEw <h

~ ﬁa < €worst (NO g'm) S; \ﬁ a 211'1(1”/]7) ~ WOISt( ) - 2w
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MAIN THEOREM (one of several)
1
—e 1)
L £ ——
T, @—— [ ——e 7, 1.- > noise channel N/
V(v —e '

¢ T,
O
w
o
w
B The error of the isometric encoding £(-) = V(-)V1 is bounded below by
z
X 1 AT e~ ()
) L Good codes:
2 Eworst (N 0 E) > a1
E wors ( ) 2n max; ATZ !

(N 0&) > 1|7y — Tr(Tr)1r/di|l1/(2dL)
~ n max; AT;

AT; = max(eig(7T;)) — min(eig(7;))
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ﬂll——— —_ \ |
| Comg\ementarx Channels:.

Given a channel:

,
Fap() = Tr(j(WA—a'BC(')WA—-rBG)

T FAB
here WaBC 152 Stinespring dilation of /A=
W W

1Y)

w

i Complementdry channel:

= -
: Fasc() = Trg(Wassc()Wa-Be
X

2 -

& (It is the channel from input to the environmen

q

Pirsa: 19040083

nentary channel to the constant channel

0, T)
. Te() = Tr(-)¢
’>(N © 5: 72)

1 ATy
2n max; AT;

(I¥a'l,)|),
imal charge eigenvalues.

Bény, Cédric, and Ognyan Oreshkov. "General conditions for approximate quantum error
correction and near-optimal recovery channels." Physical review letters 104.12 (2010):120501
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—e 1
L .
P G l
17, g — 1;
e
Noise model: erasure of subsystems labelled by o with probability g, g T
Ty — 1) — €N (Ta)|lee < 6 T (3 (T — ta)12E(01)) | < 7
The code is approximately covariant Most of the charge falls within the range [t ,t.]
6] / ATL/2-6—-n \
o wors g Z
g Cworst (N 0 &) max,(ATy/qa)
g
E Ee(Nog) ”ATL—M(TL)]IL”l/dL—(S—‘T]
X >
o (ee(N 0 E)), maxq(ATy/qa)
o
o
E \_ %
L . , , . . , C 1 [a— o+ ATa:ti_t;
I1; projects onto eigenspaces of T,, with eigenvalues outside [t , ¢}
~~
~~7

w(Tr) is the median eigenvalue of T,

Pirsa: 19040083

ta = (t5 +t1)/2
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SYMMETRIES
INADS/CFT

BULK GLOBAL SYMMETRIES AND TIME

Standard lore in AdS/CFT:

“No bulk global symmetries”

Bulk-to-boundary map defines a QECC

Bulk time evolution = boundary time evolution

SYMMETRIES IN ADS/CFT

Apparent violation of Eastin-Knill?

J>
\ .
w
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ADS/CFT IN ONE SLIDE

Gravity in AdS in d+1 dimensions

Conformal field theory in d dimensions

(\

(D o

MNP

APPROXIMATE QEC
QoA

/
\

Pirsa: 19040083 Page 74/81



26

ADS/CFT IN ONE SLIDE

Gravity in AdS in d+1 dimensions

(\

APPROXIMATE QEC

[
\

Pirsa: 19040083

Conformal field theory in d dimensions

______________________________________________

Consider a boundary subregion A,
constructed by tracing over A

______________________________________________
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ADS/CFT IN ONE SLIDE

Gravity in AdS in d+1 dimensions

-

—

APPROXIMATE QEC

/

Conformal field theory in d dimensions

Pirsa: 19040083

Consider a boundary subregion A,
constructed by tracing over A

______________________________________________

We can try to find all bulk operators |
expressible with supportonly onA

______________________________________________

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

' There is a procedure for mapping bulk
i operators to boundary operators

______________________________________________

» This mapping from bulk to boundary
' defines a QECC!

______________________________________________
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NO GLOBAL
BULK
SYMMETRIES

IN ADS/CFT

* Boundary CFT decomposed into N regions {4},

* Bulk has corresponding decomposition into entanglement

wedges {a;}\,

* Bulk global symmetry: product of local unitaries

N
UL(g) = Q) Ui(g)

1=0
» Mapped to boundary. Splittable CFT = local unitaries

N
Ucrr(g) = Q) Wilg)
=1

A‘ SYMMETRIES IN ADS/CFT

Pirsa: 19040083 Page 77/81



28

SYMMETRIES IN ADS/CFT

O

Pirsa: 19040083

MORE DETAIL

N
The boundary CFT is splittable:  Ucrr(g) = (X) Wi(g)

* Boundary operators can be decomposed i=1

Erasure of A; is a correctable error for a,.

The code space for AdS/CFT is low energy excitations
above the vacuum:

Heode = span{|Q), $(2) [2) , §(2)$(y) 1), .. .}

The W; are argued to be low energy. Therefore they
preserve the code space and are logical operators

Logical operators that are also correctable errors
must be trivial

Harlow, Daniel, and Hirosi Qoguri. "Symmetries in quantum field
theory and quantum gravity." arXiv preprint arXiv:1810.05338 (2018).

Harlow, Daniel, and Hirosi Ooguri. "Constraints on symmetry
from holography." arXiv preprint arXiv:1810.05337 (2018).
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SYMMETRIES IN ADS/CFT

O

Pirsa: 19040083

Each “local” bulk operator
to be invariant unde

The string (dressing) must con

least one Ag:

However, th

and s blind to the €

The dressing tran
symmetry

B

e dressing is only gravit

7 g | ings?
( What about ravitational dressings:

needs a dressing

r diffs.

nect to at

ational,

harge in question

sforms trivially under the

ns

Harlow, Daniel, and Hirosi Ooguri. "Symmetries in quantum field
theory and quantum gravity." arXiv preprint arXiv:1810.05338 (2018).

Harlow, Daniel, and Hirosi Ooguri. "Constraints on symmetry
from holography." arXiv preprint arXiv:1810.05337 (2018).
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TIME EVOLUTION COVARIANCE

The bulk and boundary theories are time translation invariant
Ay Wi(g)

Bulk time evolution = boundary time evolution

e —
The mapping is covariant w.rt. this symmetry Wa(q) @
Why does this not violate the previous slide? Ay
agp
Uo(g)

The gravitational dressing, previously ignored, is crucial

SYMMETRIES IN ADS/CFT

This dressing transforms non-trivially under the group action

 This transformation implements bulk time evolution

O

The dressing can be detected locally. Hence, the error correction must be approximate
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Symmetry group:

Lie group

(continuous symmetry) Finite group

Code dimension:

Finite dimensional

code Explicit construction

Infinite dimensional

Saae Explicit construction Explicit construction

f Encoding

Alice

THANK YOU!

QUESTIONS?

COVARIANT QEC

“

Pirsa: 19040083

V(!

(N oE) = 1= PPN oE)

€worst (N o 8) >

| I 0
2n max; AT;

EU(I) e Z |—3ya -z +Y, 2(2: mg y)>123 (xlin

xz,YyEL
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