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Abstract: Current progress in quantum field theory is largely driven by the conformal bootstrap program, which aims to classify the space and
properties of conformal field theories using symmetries and other fundamental constraints. In the context of the AAS/CFT Correspondence, this
increasingly sophisticated endeavor doubles as a probe of foundations of quantum gravity. | will describe the current era in the holographic
application of conformal field theory methods, with particular focus on the use of the conformal bootstrap to describe the spectrum and dynamics of
guantum gravity and string theory beyond the classical regime.
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One of the world’s most fascinating
features is its dependence on scale.
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In quantum field theory (QFT), scale-dependence is formally encoded in the
equations of the renormalization group.

@ CFTy,

Zooming out ;
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But not all theories flow. Conformal field theories (CFTs) are scale-invariant. More
precisely, they are invariant under the full conformal group.

As fixed points of RG flows, CFTs are essential to the study of QFT in general.
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We are witnessing dramatic change in our understanding of conformal field theory.

There has been a proliferation of new ideas about what, fundamentally, a CFT /s,
without reliance on weak coupling expansions, lattices, or, indeed, even quantum fields.
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The bootstrap has three main prongs:

1. The space of CFTs
2. The properties of a//CFTs

3. The properties within given universality classes of CFTs

Originally, these investigations were numerical. Now, analytics are exploding.

How the bootstrap works - i.e. what symmetries and abstract constraints are used —
IS time-dependent, as we discover new facts about field theory.
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The bootstrap paradigm is especially
powerful in the context of the
AdS/CFT Correspondence.
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The bootstrap paradigm is especially
powerful in the context of the
AdS/CFT Correspondence.

Theories of gravity have their own requirements:

Time machines

N Juvr G
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Naked singularities
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The bootstrap paradigm is especially
powerful in the context of the
AdS/CFT Correspondence.
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The bootstrap paradigm is especially
powerful in the context of the
AdS/CFT Correspondence.

N

\ Large N
Strongly coupled

!
Classical
gravity

General
relativity

String theory
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At the outset, AdS/CFT was mostly used as a tool for determining strongly
coupled field theory dynamics from simple, semiclassical calculations in gravity.

AdS —7 CFT

In the current era, CFT knowledge is sophisticated enough to reverse the arrow.

Ada «—CEF

We are learning about quantum gravity from insights and precision
computations in CFT,
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[ Three Core Questions: J

What is the space of consistent quantum field theories,
and of theories of quantum gravity?

What are the underlying physical and functional structures of quantum
gravitational scattering amplitudes and field theory correlation functions?
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Today's talk will be about some bootstrap-inspired CFT techniques, at both large and finite N,
that shed light on the spectrum and dynamics of AdS quantum gravity.

This will include the development of a promising alternative to perturbative string theory.

| will try to emphasize the scope of the (ever-expanding!) conformal bootstrap ideal.
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Outline

1.
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Conformal Bootstrap: Then and Now
« 1.0: Crossing symmetry and numerics
« 2.0: Analytics

Conformal Bootstrap at Large N and AdS/CFT

The Bound State Spectrum of 3D Quantum Gravity

Modern Approaches to AdS Scattering Amplitudes
«  The AdS Unitarity Method
* A new alternative to string perturbation theory

Visions for Future Research

Page 16/70



What are Conformal Field Theories (made of)?

|. Local operators: 50 )l B i Ar i

These carry a conformal dimension (A4), Lorentz spins, and maybe other symmetry charges.

IIl. Their interactions: (0, (z)0,(0) ~ Z Ci_-j]\:c)h:(())ilfﬁk —Ai—A; i
k

This is the operator product expansion (OPE). J

‘OPE data” {4;, C;,} completely determine local operator dynamics of a CFT.

Page 17/70

Pirsa: 19040079



What are Conformal Field Theories (made of)?

l. Local operators: £ €L () i A, i

These carry a conformal dimension (A4), Lorentz spins, and maybe other symmetry charges.

Il. Their interactions: ~ (0,(z)0,(0) ~ Z Ci;k O (0)z e —0i=4; i
k

This is the operator product expansion (OPE). J

‘OPE data” {4;, C,} completely determine local operator dynamics of a CFT.

Page 18/70

Pirsa: 19040079



What are Conformal Field Theories (made of)<¢

l. Local operators: &h O 0. i Az i

These carry a conformal dimension (A4), Lorentz spins, and maybe other symmetry charges.

Il. Their interactions: C)i(;g_-)(’)‘_j(()) ~ Z (jfi__}.]‘_c)k(());x&;\. TAVE VAN i
k

This is the operator product expansion (OPE). J

‘OPE data” {4;, C,} completely determine local operator dynamics of a CFT.

[ Charting theory space = Constraining the sets {4;, C} J

Note: No reference to Lagrangians!
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What are Conformal Field Theories (made of)?

We can glue these vertices to make higher-point correlation functions.

N
)——X 2

These obey dynamical laws which constrain the underlying data {4;, Cy;} -

Conformal partial

~~— wave (CPW)

C} ) (-1:% 1O
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What are Conformal Field Theories (made of)¢

We can glue these vertices to make higher-point correlation functions.

Conformal partial

~~— wave (CPW)

These obey dynamical laws which constrain the underlying data {4;, Cy;} -

« Unitarity: A A 0 and (_7’_‘12_.,&r >0

¢ A lativity: T O
ssoclativity 6)10203 = C)IOQO:g

Soon we will discuss other, more recently discovered, constraints.
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Booftstrap 1.0: Crossing symmetry + numerics

Inside four-point functions, associativity implies crossing symmetry:
b = e
@ O o’
Non-trivial: partial waves are not symmetric!

Unitarity is key: expansion coefficients are positive

In d=2: Minimal models, WZW models, Liouville CFT
In d>2: Basically nothing until 2008

[Belavin, Polyakov, Zamolodchikov; Rattazzi, Rychkov, Tonni, Vichi; Ferrara, Gatto, Grillo, Parisi;
Zamolodchikov; Dolan, Osborn; EI-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi]
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Some classic bootstrap questions:

Is there an upper bound on the dimension of the lightest operator in any CFT? In a given OPE?
Are there bounds on OPE coefficients — for example, central charges or anomaly coefficients?

Assuming certain features, is there a CFT at all? If so, can we determine the precise value of its
critical exponents, etc?
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Why numericse

The crossing equations are functional equations for an infinite set of OPE data {4, Cj;} .

Their solution requires truncation, approximation, or (usually) both.
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[EI-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi]
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1.60}

1.45

1.40¢

Many interesting known CFTs
seem to saturate bootstrap
bounds, sit at kinks, or lie inside
small islands.

4A1

0.522 0.52

[Kos, Poland, Simmons-Duffin, Vichi]

Page 27/70



Bootstrap 2.0: Analytics

Some landmark results:

>

Y Y ¥V Y
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Every CFT has an infinite number of primaries.

Every 2d CFT has a lightest primary below a universal upper bound.

CFTs with higher spin currents are free.

Central charges — measures of anomalies and/or degrees of freedom - are lower-bounded.

Many classes of superconformal theories have soluble subsectors that are completely determined
by 2d chiral algebras.

[Komargodski, Zhiboedov; Fitzpatrick, Kaplan, Poland, Simmons-Duffin;
Hellerman: Maldacena, Zhiboedov: Hofman, Maldacena: Beem, Rastelli, van
Rees; Afkhami-Jeddi, Hartman, Kundu, Jain; Caron-Huot]
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Bootstrap 2.0: Analytics

Some landmark results:

» Every CFT has an infinite number of primaries.
Every 2d CFT has a lightest primary below a universal upper bound.
CFTs with higher spin currents are free.

Central charges - measures of anomalies and/or degrees of freedom - are lower-bounded.

Y Y ¥ Y%

Many classes of superconformal theories have soluble subsectors that are completely determined
by 2d chiral algebras.

Some of these proven using new approaches, not traditional crossing symmetry!
» Causality and analyticity
» Regge physics/quantum chaos
» Energy conditions (e.g. ANEC)
» In 2d, modular invariance
[Komargodski, Zhiboedov; Fitzpatrick, Kaplan, Poland, Simmons-Duffin;

Hellerman: Maldacena, Zhiboedov: Hofman, Maldacena: Beem, Rastelli, van
Rees; Afkhami-Jeddi, Hartman, Kundu, Jain; Caron-Huot]
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Bootstrap 2.0: Analytics

Numerical bootstrap typically expands in a Lorentzian neighborhood of the crossing-
symmetric point.

N

@ N (Real Euclidean positions)

Much analytic progress has come from deriving constraints in real-time kinematics.
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. Lightcone Bootstrap

Consider a /ightcone limit

In all d>2, crossing symmetry + existence of ground state implies:

/Given two local conformal primary operators O, and 02\
there exists an infinite set of /arge-sp/in composite primaries,

[(91 OQ]-,,\? — (,?)1|:|rj"(‘i)‘,_,,l o 8‘”{, C)Z

with vanishing anomalous dimension at infinite spin.

\ Aw-:.,f’>>1 ~ A1 +As+2n+ /4 /

= CFT at large spin 2D Mean field theory/“Generalized free field theory”

Pirsa: 19040079

[Komargodski,
Zhiboedov; Fitzpatrick,
Kaplan, Poland,
Simmons-Duffin]
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. Lightcone Bootstrap

T=A—/

MFT

l

An,ﬁ})l ~ A] -+ AQ -+ 2n + 4
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. Lightcone Bootstrap

* =

MFT
2ol TF \ Large spin perturbation theory
Regge trajectories in CFT 4., = Analytic families of operator data [Caron-Huot;

Alday]

Their precise shape depends on the operator content of the theory.

Pirsa: 19040079 Page 33/70



. Lightcone Bootstrap

We can build up trajectories operator-by-operator.
Q: If an operator O couples to O, and O,, what is its contribution to trajectories (0,0,)?

In a large spin expansion, y—To

.7,‘-.” ‘{, ‘ C) ™~

At finite spin?
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. Lightcone Bootstrap

We can build up trajectories operator-by-operator.
Q: If an operator O couples to O, and O,, what is its contribution to trajectories (0,0,)?

In a large spin expansion, g—To

F}I-!; ‘{. ’ C) ~

At finite spin?
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. Lightcone Bootstrap

We can build up trajectories operator-by-operator.

Q: If an operator O couples to O, and O,, what is its contribution to trajectories (0,0,)?

In a large spin expansion,

Tn 2 ’ v b fe o
L.
At finite spin”? 1 2
>—< =Z/dAK@|O“ OAa s
4o T
3 2

A: (0,0,) data = Residues of crossing kernel for CPW at double-twist poles.

1 2
3 2
ore =0 5 < , o)
1 g 2
I 2

Pirsa: 19040079
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. Lightcone Bootstrap

The crossing kernel is equivalent to the 6] symbol for the conformal group.
Its definition generalizes the addition of angular momenta in quantum mechanics:

3j symbol =J1 + J2

6) symbol =J1 +J2 + J3

Vi

/>_< I N

Computed in d=1,2,4 = ;F5 hypergeometric (1?)

[Hogervorst, van Rees; Gadde]

[Liu, EP, Rosenhaus, Simmons-Duffin]

Its poles lie at MFT twists = Efficient encoding of (0,0,) Regge trajectories.
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Outline

1.
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Conformal Bootstrap: Then and Now
« 1.0: Crossing symmetry and numerics
« 2.0: Analytics

Conformal Bootstrap at Large N and AdS/CFT

The Bound State Spectrum of 3D Quantum Gravity

Modern Approaches to AdS Scattering Amplitudes
*  The AdS Unitarity Method
* A new alternative to string perturbation theory

Visions for Future Research
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Large N Conformal Field Theory

CFT AdS
“Single-trace” operators O Elementary fields
%
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Large N Conformal Field Theory

CFT AdS
“Single-trace” operators O | Elementary fields
b;
Stress tensor Graviton
Yj;1..1/ v
“Multi-trace” composites |, ], Multi-particle states [, o, |.
[C?;_C?_,-Ch], 5 [(jf),-_(j/)j(;")kJ, L
Conformal dimensions Masses o :
A; m; = A(A; — d)
Central charge e~ N# Planck scale (loop expansion)
Correlation function Amplitude
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Strongly-coupled Area law

qualrk-gluon entanglement
plasma
n 1 g ARt
AL T S EE — TS
s 45 =

Ay — CFEl

Huge landscape of Strongly coupled
non-Lagrangian CFTs anomalous
dimensions

_. : ~0
A~ A"‘[strizl;; B /\#
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[Maldacena, Strings '98, slide 22]
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Lightcone limit in gravity

Double-trace composites @ Two-particle bound states
[(/)l ({)2]1: Vi [()D 1 (D.Z] n.t

Anomalous dimensions ~ <—>  Binding energies

Large spin falloff {:}» Gravitational force falloff

Pirsa: 19040079

n = Radial quantum number

{ = Angular momentum
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Lightcone limit in gravity

Double-trace composites <:> Two-particle bound states
[(/)l C)i] n,t [(/) 1 (.b2] .t

Anomalous dimensions ~ <—>  Binding energies

Large spin falloff {;\» Gravitational force falloff

In CFT,, T and its composites [T...T] have zero twist.

4 )
What do CFT, double-twist Regge trajectories look like?

n = Radial quantum number

[ = Angular momentum

5 What is the bound state spectrum of 3D quantum gravity?
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[Collier, Gobeil, Maxfield, EP]

Bound State Spectrum of 3D Gravity

“Virasoro Mean Field Theory”: the complete contribution to composite operator data
(0,0,) from the Virasoro vacuum module =1, T, [TT], ...
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[Collier, Gobeil, Maxfield, EP]

Bound State Spectrum of 3D Gravity

“Virasoro Mean Field Theory”: the complete contribution to composite operator data
(0,0,) from the Virasoro vacuum module =1, T, [TT], ...

T

Finite number
of discrete )
trajectories £ At large c,

— VMFT = MFT

+

Continuum (=

c-1 —

above T = —
12
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[Collier, Gobeil, Maxfield, EP]

Bound State Spectrum of 3D Gravity

The computation uses the Virasoro crossing kernel, computed by Ponsot + Teschner.
If we include operators besides the vacuum and its descendants, the trajectories move.

However, in analogy with d>2, all trajectories asymptote to VMFT at large spin!
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[Collier, Gobeil, Maxfield, EP]

Comparison to d>2

d>2

Mean Field Theory Virasoro Mean Field Theory

Infinite tower of discrete composites Finite tower of discrete composites
+ continuum
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[Collier, Gobeil, Maxfield, EP]

Comparison to d>2

d>2

Mean Field Theory Virasoro Mean Field Theory
Infinite tower of discrete composites Finite tower of discrete composites
+ continuum
MFT additivity of twists: VMFT additivity of momenta:
Th=T1+T2+n an = a1 +as +nb
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[Collier, Gobeil, Maxfield, EP]

Comparison to d>2

d>2

Mean Field Theory Virasoro Mean Field Theory
Infinite tower of discrete composites Finite tower of discrete composites
+ continuum
MFT additivity of twists: VMFT additivity of momenta:
Th=T1+T2+n anp = a1+ as +nb

Extracted from SO(d,2) crossing kernel Extracted from Virasoro crossing kernel
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[Collier, Gobeil, Maxfield, EP]

Comparison to d>2

d>2

Mean Field Theory Virasoro Mean Field Theory
Infinite tower of discrete composites Finite tower of discrete composites
+ continuum

MFT additivity of twists: VMFT additivity of momenta:

Th=T1+T2+n anp = a1+ as +nb
Extracted from SO(d,2) crossing kernel Extracted from Virasoro crossing kernel
Large spin universality: MFT Large spin universality: VMFT
1/c effects not resummable, non-universal 1/c effects resummed, universal

(i.e. T dynamics are theory-dependent)
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[Collier, Gobeil, Maxfield, EP]

Bound State Spectrum of 3D Gravity

L=R+2A+ (0d1)° + qu’ﬂ)f + (0¢2)? + nafjg";?_f

The result immediately translates into 3D gravity using the AdS/CFT dictionary.

m,‘f‘ =A0;(A;—-2), 1+ 6Q% =

2G'N

Incorporates quantum gravitational backreaction in AdS,.

Finite cutoff on discrete tower <\t> Black hole threshold

Addition of momenta <—> Addition of deficit angles

(‘)12 (;)1 } (—)2 X 1 + Qo

[Collier, Gobeil, Maxfield, EP]
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[Collier, Gobeil, Maxfield, EP]

Bound State Spectrum of 3D Gravity

o

L=R+2A+ (0¢1)° + m5¢5 + (0¢2)* + m5¢:

St

b

The result immediately translates into 3D gravity using the AdS/CFT dictionary.

2G N

Incorporates quantum gravitational backreaction in AdS,.

m? =A0;(0;,-2), 1+6Q*=

Finite cutoff on discrete tower <\t> Black hole threshold

Addition of momenta <—> Addition of deficit angles

(‘)12 (;)1 } (—)3 OC Gy +— O

[Collier, Gobeil, Maxfield, EP]
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The conformal bootstrap typically constrains CFT correlation functions.

AdS scattering amplitudes @ CFT correlation functions
Loop expansion in AdS <;> 1/N expansion in CFT

e D

K Planar (1/N?) Non-planar (1/N% + ..) /

S-matrices in flat space are full of rich mathematics and physics.

What happens in curved spacetimes? AdS? dS? Cosmological spacetimes?
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Quite a bit is known about tree-level.

CFT: g AO Conformal partial
o wave
O

AdS:
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Much less is known about loop level.

Yes: No:

This is “just” perturbation theory!
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In the world of amplitudes, the dominant paradigm is that of “unitarity methods”.
Recall the optical theorem for an S-matrix:

S=1+if ——> Die(F)=TF

Unitarity of S

Important: this buys you one order in perturbation theory. e.g. at 1-loop,
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Unitarity method = constructing loop-level amplitudes from low-order ones by cutting.

Basic idea: A Lagrangian defines the set of tree-level amplitudes, so from these, one must
be able to construct the S-matrix to all orders in perturbation theory.
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“AdS unitarity method": a prescription for constructing loop-level AdS amplitudes from

OPE data of lower-order ones.

This implements the basic maxim of unitarity methods, but with a twist: AdS amplitudes
are hard to deal with directly, we reconstruct them from the CFT instead.

[Aharony, Alday, Bissi, EP]
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What we do, in words: “Glue together” CFT data at leading order in 1/N (dual to AdS tree
amplitudes) to compute the data at lower orders in 1/N (dual to AdS loop amplitudes).

The gluing takes place in the coefficients of the conformal partial wave decomposition.

Tree 1-loop

X
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Back to the bulk

Emboldened, we have returned to the bulk, to
discover clear parallels with flat space methods:

« Cutting = put internal propagators on-shell
« Gluing = reconstructing loops from its cuts

X

- Transcendentality properties in spacetime can
be read off from diagrammatic cutting rules

Spacetime
transcendentality

Diagrammatic
cutting rules

Structure of OPE
coefficients [Meltzer, EP, Sivaramakrishnan (in

progress)]
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One of the most beautiful — and elemental — aspects of string/M-theory is that they
predict specific corrections to general relativity.

An experimentalist might rightfully ask: What are they?

Known (fixed by SUSY) Unknown
|

*q[\-'l-t.h(.‘(ny e / (]ll?t"\m( R == jl)l S L)hll)l - otk )

In M-theory,
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A new approach to string perturbation theory

1) Holographically compute the one-loop amplitude for strings in AdS, as a nonplanar
correlator in a dual CFT.

2) Take a “flat space limit”

LAIIS o

[Alday, Bissi, EP]
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Application o string theory

The prototypical CFT with a string dual is 4d maximally supersymmetric Yang-Mills:

g5 where Lags, = Lgs

We compute the leading non-planar correction to a four-point function.
In practice, we take a low-energy limit = CFT strong coupling expansion.

: |
Pure (super)gravity Stringy corrections ~ {yi,
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Application 1o string theory

+@+@

Compute these diagrams using the strong-coupling expansion of the CFT.

Flat space limit = Low-energy expansion of the genus-one string amplitude in 10d flat space.

This matches the first several terms in genus-one string perturbation theory!
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Analytic methods in conformal field theory...

Goal: develop new analytic tools for exploring the space and properties of conformal field
theories, by extending the conformal bootstrap.

« Seek new fundamental constraints: on vacuum

correlators, and on other observables. — Ol
Z@ O Z@/

wt®
.....
....
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The conformal bootstrap generates plots like this...

\
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..but not like this:

/Low density High densm

.

Can we make a contour map of theory space?

Can we give existence proofs/"proofs” for CFTs using crossing and nothing/little else? e.g. statistically?
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... In the context of the AdS/CFT Correspondence

Goal: use analytic CFT computations to probe quantum gravity and string
theory observables, coupled with direct bulk computation where possible.

* All-order amplitudes
* Planck-scale scattering, scattering of/near black holes

« Construct string/M-theory S-matrices

+ Bootstrap the landscape of AdS string vacua
* Are there bounds on the shapes and sizes of extra dimensions?
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Final thoughts

Tools for correlators in QFT/CFT have extremely broad use, including in cosmological
correlations, quantum criticality in condensed matter, ...

AdS/curved space amplitudes are useful warmup/toy model for cosmological case,
astrophysical scattering near black holes

It also seems vitally important to compute basic observables of string/M-theory.

The conformal bootstrap and holography are just getting started.
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