Title: Leggett-Garg Inequalities: Decisive Tests for Macrorealism and Protocols for Non-Invasive Measurements
Speakers: Jonathan Halliwell
Series: Perimeter Institute Quantum Discussions
Date: March 06, 2019-4:00 PM
URL: http://pirsa.org/19030101
Abstract: The Leggett-Garg (LG) inequalities were introduced, as a temporal parallel of the Bell inequalities, to test macroscopic realism -- the view that a macroscopic system evolving in time possesses definite properties which can be determined without disturbing the future or past state. The talk will begin with a review of the LG framework. Unlike the Bell inequalities, the original LG inequalities are only a necessary condition for macrorealism, and are therefore not a decisive test. I argue, for the case of measurements of a single dichotomic variable Q , that when the original four three-time LG inequalities are augmented with a set of twelve two-time inequalities also of the LG form, Fine's theorem applies and these augmented conditions are then both necessary and sufficient [1]. A comparison is carried out with the alternative necessary and sufficient conditions for macrorealism\ \ based on no-signaling in time conditions which ensure that all probabilities for Q at one and two times are independent of whether earlier or intermediate measurements are made. I argue that the two tests differ in their implementation of the key requirement of non-invasive measurability so are testing different notions of macrorealism, and these notions are elucidated.\ \ I also describe some alternative protocols which achieve non-invasiveness, one involving continuous measurement of the velocity conjugate to Q [2], which was recently implemented in an experiment at IQC, the other involving a modification of the standard ideal negative measurement protocol [3].
\
[1] J.J.Halliwell, Phys Rev A96, 012121 (2017); A93, 022123 (2016); arxiv:1811.10408.
[2]\ J.J.Halliwell, Phys. Rev. A94, 052114 (2016).
\
[3] J.J.Halliwell, Phys. Rev. A99, 022119 (2019).

Leggett-Garg Inequalities: Decisive Tests for Macrorealism and Protocols for Non-Invasive Measurements

Jonathan Halliwell

Imperial College London
Perimeter Institute 6.3.19

Macroscropic Realism: Is the Moon Really There When No-one Looks?

Can a quantum system be thought of as following a definite trajectory?

Can macroscopic systems exist in superposition states?

- Relates to questions of classicality conditions in quantum theory - there is a hierarchy of such conditions.
- Macrorealism is, perhaps, the weakest notion of classicality. The Leggett-Garg inequalities were designed to test it.
- There exist other tests of macrorealism - no-signaling in time and coherence witness conditions - which are stronger.

This Talk

- Review of the Leggett-Garg Framework
- Extension of the LG Framework - a decisive and richer test of macrorealism. Clearer parallel to Bell experiments.
- Comparison with alternative, stronger conditions for macrorealism.
- Alternative methods for non-invasive measurements.

Based on: JJH, Phys Rev A93, 022123 (2016); A 94, 052131 (2016); A 94, 052114 (2016); A96, 012121 (2017); A99, 022119 (2019).

Current experiment: Shayan Majidy, Hement Katiyar and Raymond Laflamme

Outline

1. EPRB experiment, CHSH inequalities, Fine's theorem.
2. Macrorealism and Leggett-Garg tests.
3. Two-time measurements.
4. Conditions for macrorealism using extended Leggett-Garg inequalities.
5. Conditions for macrorealism using no-signaling in time.
6. Quantum-mechanical probabilities.
7. Non-invasive measurements

1.1 The EPRB Experiment

Figure: Testing Local Realism using the EPRB experiment.
Measurements are made of $p\left(s_{1}, s_{3}\right), p\left(s_{1}, s_{4}\right), p\left(s_{2}, s_{3}\right), p\left(s_{2}, s_{4}\right)$, where $s_{i}= \pm 1$.

1.2 EPRB and the CHSH Inequalities

- $p\left(s_{1}, s_{3}\right), p\left(s_{1}, s_{4}\right), p\left(s_{2}, s_{3}\right), p\left(s_{2}, s_{4}\right)$ satisfy no signaling (NS):

$$
\sum_{s_{1}} p\left(s_{1}, s_{3}\right)=p\left(s_{3}\right)=\sum_{s_{2}} p\left(s_{2}, s_{3}\right), \quad \text { etc. }
$$

- Seek a probability $p\left(s_{1}, s_{2}, s_{3}, s_{4}\right)$ such that

$$
p\left(s_{1}, s_{3}\right)=\sum_{s_{2}, s_{4}} p\left(s_{1}, s_{2}, s_{3}, s_{4}\right), \quad \text { etc. }
$$

- If such a probability exists then the correlation functions

$$
C_{i j}=\sum_{s_{1}, s_{2}, s_{3}, s_{4}} s_{i} s_{j} p\left(s_{1}, s_{2}, s_{3}, s_{4}\right),
$$

satisfy the eight CHSH inequalities, e.g.

$$
-2 \leq C_{13}+C_{14}+C_{23}-C_{24} \leq 2
$$

1.3 Fine's Theorem

Fine's theorem: The eight CHSH inequalities plus the NS conditions, are also a sufficient condition for the construction of $p\left(s_{1}, s_{2}, s_{3}, s_{4}\right)$

- CHSH inequalities together with the NS conditions are a necessary and sufficient condition for Local Realism.
- Similarly for three measurements and the Bell inequalities,

$$
1+C_{12}+C_{23}+C_{13} \geq 0
$$

(plus three more).

- The existence of the probability $p\left(s_{1}, s_{2}, s_{3}, s_{4}\right)$ is deduced indirectly from the partial snapshots $p\left(s_{1}, s_{3}\right), p\left(s_{1}, s_{4}\right)$, $p\left(s_{2}, s_{3}\right), p\left(s_{2}, s_{4}\right)$ - it is not explicitly measured.
- QM can sometimes supply candidate underlying probabilities (e.g. DH approach). CHSH then implies bounds on the interference.

1. EPRB experiment, CHSH inequalities, Fine's theorem.
2. Macrorealism and Leggett-Garg tests.
3. Two-time measurements.
4. Conditions for macrorealism using extended Leggett-Garg inequalities.
5. Conditions for macrorealism using no-signaling in time.
6. Quantum-mechanical probabilities.
7. Non-invasive measurements

2.1 Macrorealism and Leggett-Garg Tests

The LG inequalities (Leggett and Garg, 1985) entail sequential measurements in time on a single system. They are designed to test Macrorealism (MR):

1. Macrorealism per se (MRps): the system is in a definite state at each moment of time;
2. Non-invasive measurability (NIM): the state can be measured without disturbing the subsequent dynamics;
3. Induction (Ind): future measurements do not affect the present state.

We write $\mathrm{MR}=\mathrm{MRps} \wedge \mathrm{NIM} \wedge$ Ind.
Review: Emary, Lambert and Nori (2014) Critique: Maroney and Timpson (2014)

2.2 The Leggett-Garg Inequalities

- Measurements are made of a single variable $Q= \pm 1$ at pairs of times $t_{1}<t_{2}<t_{3}<t_{4}$, to determine the four pairwise probabilities $p\left(s_{i}, s_{j}\right)$ and hence $C_{i j}$ (for $i j=12,23,34,14$).

- $M R \Longrightarrow$ underlying probability exists \Longrightarrow LG inequalities:

$$
-2 \leq C_{12}+C_{23}+C_{34}-C_{14} \leq 2,
$$

(plus six more).

2.3 LG Violations in a Simple Spin Model

- Take $\hat{Q}=\mathbf{a} \cdot \sigma$ and Hamiltonian $H=\frac{1}{2} \omega \sigma_{x}$. We find

$$
\begin{aligned}
C_{12} & =\frac{1}{2}\left\langle\hat{Q}\left(t_{1}\right) \hat{Q}\left(t_{2}\right)+\hat{Q}\left(t_{2}\right) \hat{Q}\left(t_{1}\right)\right\rangle=\mathbf{a}\left(t_{1}\right) \cdot \mathbf{a}\left(t_{2}\right) \\
& =\cos \omega\left(t_{2}-t_{1}\right)
\end{aligned}
$$

closely analogous to EPRB.

- LG inequalities with $t_{1}=t, t_{2}=2 t, t_{3}=3 t, t_{4}=4 t$ are

$$
-2 \leq 3 \cos \omega t-\cos 3 \omega t \leq 2
$$

Maximal violation of $2 \sqrt{2}$ at $\omega t=\pi / 4$.

- Similar results for models with higher dimensional Hilbert spaces.

2.3 LG Violations in a Simple Spin Model

- Take $\hat{Q}=\mathbf{a} \cdot \sigma$ and Hamiltonian $H=\frac{1}{2} \omega \sigma_{x}$. We find

$$
\begin{aligned}
C_{12} & =\frac{1}{2}\left\langle\hat{Q}\left(t_{1}\right) \hat{Q}\left(t_{2}\right)+\hat{Q}\left(t_{2}\right) \hat{Q}\left(t_{1}\right)\right\rangle=\mathbf{a}\left(t_{1}\right) \cdot \mathbf{a}\left(t_{2}\right) \\
& =\cos \omega\left(t_{2}-t_{1}\right)
\end{aligned}
$$

closely analogous to EPRB.

- LG inequalities with $t_{1}=t, t_{2}=2 t, t_{3}=3 t, t_{4}=4 t$ are

$$
-2 \leq 3 \cos \omega t-\cos 3 \omega t \leq 2
$$

Maximal violation of $2 \sqrt{2}$ at $\omega t=\pi / 4$.

- Similar results for models with higher dimensional Hilbert spaces.

2.4 Non-invasive Measurements

Ideal negative measurements: the detector is coupled to $Q=+1$ at the first time. A null result implies $Q=-1$.
(Knee et al, 2012; Robens et al. 2015; Katiyar et al 2016)
This eliminates alternative explanations by classical models with invasiveness. (Montina, 2012; Yearsley, 2013).

Ideal negative measurements still cause wave function collapse!
Measurement of $p\left(s_{1}, s_{2}\right)$ typically involves an ancilla whose state becomes entangled with Q at t_{1}, i.e. we have two systems each with 2 (or more) states, hence the similarity to EPRB.

Weak measurements are frequently used. Although the disturbance can be made very small the effect measured is (often) of the same order of magnitude. (Palacios-Laloy et al, 2010)

2.5 Aside: A Simple Direct Connection to the EPRB Case

- Suppose the LG system is particle A of an EPRB pair (with a magnetic field near A for $t>t_{1}$).

- Measure Q_{B} at time t_{1}. Deduce the value of Q_{A}, using $Q_{A}=-Q_{B}$ at time t_{1}, without disturbing A.
- Measure Q_{A} at time t_{2}.

2.6 Comments

- The LG framework seeks to rule out certain types of hidden variable theories. Most formulations rule out only HV theories of the GRW type.
- It does not rule out de Broglie-Bohm type theories, unless locality can be invoked (Maroney and Timpson, 2014; Bacciagalupi 2014).
- The NS relations

$$
\sum_{s_{1}} p\left(s_{1}, s_{2}\right)=p\left(s_{2}\right)=\sum_{s_{3}} p\left(s_{2}, s_{3}\right)
$$

do NOT hold in general in LG tests. Fine's theorem does not hold and LG inequalities are a necessary but not sufficient condition for MR.

1. EPRB experiment, CHSH inequalities, Fine's theorem.
2. Macrorealism and Leggett-Garg tests.
3. Two-time measurements.
4. Conditions for macrorealism using extended Leggett-Garg inequalities.
5. Conditions for macrorealism using no-signaling in time.
6. Quantum-mechanical probabilities.
7. Non-invasive measurements

3.1 No Signaling in Time (NSIT)

The analogue of NS in EPRB for temporal correlations is the NSIT condition (Brukner and Kofler, 2013):

$$
\sum_{s_{1}} p_{12}\left(s_{1}, s_{2}\right)=p_{2}\left(s_{2}\right)
$$

- It characterizes both NIM and MRps at two times. When it holds Fine's theorem applies.
- NSIT is not satisfied in general by QM for sequential measurements.
- Brukner and Kofler (2013) and Clemente and Kofler (2015) sought alternative definitions of MR using a set of NSIT conditions only, without the LG inequalities.

There is a different way of meeting Fine's theorem using a different implementation of NIM avoiding sequential measurements.

3.2 Key Issue - Probability Distributions at Two Times

- Since $\left[\hat{Q}\left(t_{1}\right), \hat{Q}\left(t_{2}\right)\right] \neq 0$, the existence of $p\left(s_{1}, s_{2}\right)$ at the two-time level in the LG framework is not guaranteed.
- I.e. MR may fail already at the two time level unlike EPRB.
- If a MR description exists, there could be a number of different ways of assigning probabilities to such pairs of observables.
- Different probability assignments correspond to different measurement protocols and potentially different implementations of NIM.
- Look for alternative ways to determine

$$
p_{12}\left(s_{1}, s_{2}\right)=\frac{1}{4}\left(1+\left\langle Q_{1}\right\rangle s_{1}+\left\langle Q_{2}^{(1)}\right\rangle s_{2}+C_{12} s_{1} s_{2}\right) .
$$

3.3 Checking MR at the Two-Time Level

- We proceed indirectly. Measure $\left\langle Q_{1}\right\rangle,\left\langle Q_{2}\right\rangle$ and C_{12} (respecting NIM) in three different experiments.
- Attempt to construct the probability from its moments:

$$
q\left(s_{1}, s_{2}\right)=\frac{1}{4}\left(1+\left\langle Q_{1}\right\rangle s_{1}+\left\langle Q_{2}\right\rangle s_{2}+C_{12} s_{1} s_{2}\right)
$$

- In a MR theory, we must have,

$$
\left(1+s_{1} Q_{1}\right)\left(1+s_{2} Q_{2}\right) \geq 0,
$$

and averaging we obtain the two-time LG inequalities:

$$
q\left(s_{1}, s_{2}\right) \geq 0 .
$$

- Since NIM is assumed satisfied, $q\left(s_{1}, s_{2}\right)$ is a measure of MRps only (unlike the usual NSIT condition).
- If $q\left(s_{1}, s_{2}\right)<0, M R p s$ fails at the two-time level.

3.4 NIM Comes in Two Types

There are TWO natural implementations of NIM. They correspond to different notions of MR.

- Piecewise $\mathrm{NIM}_{p w}$: do numerous experiments to measure all the moments with NIM satisfied in each individual experiment. $q\left(s_{1}, s_{2}\right)$ is deduced indirectly.
- Sequential $\mathrm{NIM}_{\text {seq }}: p\left(s_{1}, s_{2}\right)$ is determined by sequential measurements in a single experiment. NIM is imposed via the NSIT condition:

$$
\sum_{s_{1}} p_{12}\left(s_{1}, s_{2}\right)=p_{2}\left(s_{2}\right)
$$

3.4 NIM Comes in Two Types

There are TWO natural implementations of NIM. They correspond to different notions of MR.

- Piecewise $\mathrm{NIM}_{p w}$: do numerous experiments to measure all the moments with NIM satisfied in each individual experiment. $q\left(s_{1}, s_{2}\right)$ is deduced indirectly.
- Sequential $\mathrm{NIM}_{\text {seq }}: p\left(s_{1}, s_{2}\right)$ is determined by sequential measurements in a single experiment. NIM is imposed via the NSIT condition:

$$
\sum_{s_{1}} p_{12}\left(s_{1}, s_{2}\right)=p_{2}\left(s_{2}\right)
$$

4.1 Two Routes to Defining Macrorealism at Three Times

- Piecewise $\mathrm{NIM}_{p w}$: do numerous different non-invasive measurements of the moments. The existence of the probabilities $q\left(s_{i}, s_{j}\right), p\left(s_{1}, s_{2}, s_{3}\right)$, is deduced indirectly.
- Sequential NIM $_{\text {seq }}$: measurements are made at all three times in a single experiment and the probability $p\left(s_{1}, s_{2}, s_{3}\right)$ is measured directly. NSIT conditions are imposed to ensure NIM.

4.2 Defining Macrorealism with LG Inequalities for Three Times

Use $\mathrm{NIM}_{p w}$: Measure C_{12}, C_{23}, C_{13} non-invasively and $\left\langle Q_{1}\right\rangle,\left\langle Q_{2}\right\rangle$, $\left\langle Q_{3}\right\rangle$ in six experiments.

- Look for an underlying probability $p\left(s_{1}, s_{2}, s_{3}\right)$ matching them, in 3 steps:

$$
\begin{aligned}
p\left(s_{i}\right) & =\frac{1}{2}\left(1+s_{i}\left\langle Q_{i}\right\rangle\right) \geq 0 . \\
q\left(s_{i}, s_{j}\right) & =\frac{1}{4}\left(1+s_{i}\left\langle Q_{i}\right\rangle+s_{j}\left\langle Q_{j}\right\rangle+s_{i} s_{j} C_{i j}\right)
\end{aligned}
$$

- $q\left(s_{i}, s_{j}\right) \geq 0$ for a MR theory, but can be negative in QM.
- $q\left(s_{i}, s_{j}\right)$ formally satisfies "NSIT", by construction \Longrightarrow conditions for Fine's theorem are met. E.g.,

$$
\sum_{s_{1}} q\left(s_{1}, s_{2}\right)=p\left(s_{2}\right)=\sum_{s_{3}} q\left(s_{2}, s_{3}\right)
$$

This says nothing about signaling.

4.3 MR from LGI continued

- We now have an exact mathematical parallel with Bell case: $p\left(s_{1}, s_{2}, s_{3}\right)$ exists if and only if the following 16 inequalities hold. The usual 4 three-time LG inequalities

$$
\begin{aligned}
& 1+C_{12}+C_{23}+C_{13} \geq 0, \\
& 1-C_{12}-C_{23}+C_{13} \geq 0, \\
& 1+C_{12}-C_{23}-C_{13} \geq 0, \\
& 1-C_{12}+C_{23}-C_{13} \geq 0,
\end{aligned}
$$

together with the 12 two-time LG inequalities,

$$
1+s_{i}\left\langle Q_{i}\right\rangle+s_{j}\left\langle Q_{j}\right\rangle+s_{i} s_{j} C_{i j} \geq 0
$$

- These test a particular version of MR:

$$
\mathrm{MR}_{\text {weak }}=\mathrm{NIM}_{p w} \wedge \mathrm{LG}_{12} \wedge \mathrm{LG}_{23} \wedge \mathrm{LG}_{13} \wedge \mathrm{LG}_{123} \wedge \text { Ind }
$$

- Similarly for four-time LG inequalities.

4.4 MR from LGI: Comments

- The 12 two-time LG inequalities provide the extra restrictions that elevate the usual three-time inequalities from necessary to necessary and sufficient conditions for MR.
- Recent experiments could be readily adapted to carry out this decisive test of MR by including measurements of $\left\langle Q_{1}\right\rangle,\left\langle Q_{2}\right\rangle,\left\langle Q_{3}\right\rangle$.
- See current experiment by Majidy, Katiyar and Laflamme.
- Many LG experiments to date already test certain two-time LG inequalities, using simplifications such as $Q_{1}=1$, since

$$
1+C_{12}+C_{23}+C_{13} \geq 0
$$

becomes

$$
1+\left\langle Q_{2}\right\rangle+\left\langle Q_{3}\right\rangle+C_{23} \geq 0
$$

4.5 MR from LGI: Generalizations

- Generalizations of the LG inequalities to n-times:

$$
C_{12}+C_{23}+\cdots C_{n-2, n-1}-C_{n-1, n} \leq n-2
$$

plus all possible variants with an odd number of minus signs. Fine's theorem generalizes (JJH and Mawby, 2019).

- LG experiments which measure higher-order correlation functions, such as $D_{123}=\left\langle Q_{1} Q_{2} Q_{3}\right\rangle$, have been carried out (Bechtold et al, 2016).
- The necessary and sufficient conditions for MR are then the eight conditions of the form (JJH, 2019):

$$
1+\left\langle Q_{1}\right\rangle+\left\langle Q_{2}\right\rangle+\left\langle Q_{3}\right\rangle+C_{12}+C_{13}+C_{23}+D_{123} \geq 0
$$

5.1 Defining Macrorealism with NSIT Conditions

Use NIM ${ }_{\text {seq }}$: Measure Q_{1}, Q_{2} and Q_{3} in a single experiment.
Require that $p_{123}\left(s_{1}, s_{2}, s_{3}\right)$ is a probability for three independent variables. Impose:

$$
\begin{aligned}
\operatorname{NSIT}_{(1) 23}: \sum_{s_{1}} p_{123}\left(s_{1}, s_{2}, s_{3}\right) & =p_{23}\left(s_{2}, s_{3}\right) \\
\operatorname{NSIT}_{1(2) 3}: \sum_{s_{2}} p_{123}\left(s_{1}, s_{2}, s_{3}\right) & =p_{13}\left(s_{1}, s_{3}\right) \\
\operatorname{NSIT}_{(2) 3}: \sum_{s_{2}} p_{23}\left(s_{2}, s_{3}\right) & =p_{3}\left(s_{3}\right)
\end{aligned}
$$

These test a strong notion of MR:

$$
\begin{aligned}
\mathrm{MR}_{\text {strong }} & =\mathrm{NIM}_{\text {seq }} \wedge \mathrm{MRps} \wedge \text { Ind } \\
& =\operatorname{NSIT}_{(1) 23} \wedge \operatorname{NSIT}_{1(2) 3} \wedge \operatorname{NSIT}_{(2) 3} \wedge \text { Ind }
\end{aligned}
$$

(Clemente and Kofler 2015, 2016; Maroney and Timpson, 2014)

5.2 NSIT Conditions vs LG Inequalities

- NSIT conditions define MR using equalities, whereas the LG framework defines MR using inequalities.
- NSIT conditions are checking both NIM $_{\text {seq }}$ and MRps.
- In the LG framework NIM $_{p w}$ holds by design, so tests MRps directly.
- This is why $\mathrm{MR}_{\text {strong }}$ seems to involve much more stringent conditions than $\mathrm{MR}_{\text {weak }}$.
- Can also consider an intermediate version of MR:

$$
\operatorname{MR}_{\text {int }}=\operatorname{NSIT}_{(1) 2} \wedge \operatorname{NSIT}_{(2) 3} \wedge \operatorname{NSIT}_{(1) 3} \wedge \mathrm{LG}_{123} \wedge \text { Ind }
$$

Clearly

$$
\mathrm{MR}_{\text {strong }} \Longrightarrow \mathrm{MR}_{\text {int }} \Longrightarrow \mathrm{MR}_{\text {weak }}
$$

6.1 QM Two-Time Measurement Formulae

- NIM $_{\text {seq }}$ involves requiring the standard measurement formula

$$
p\left(s_{1}, s_{2}\right)=\operatorname{Tr}\left(P_{s_{2}}\left(t_{2}\right) P_{s_{1}}\left(t_{1}\right) \rho P_{s_{1}}\left(t_{1}\right)\right)
$$

where $P_{s}=\frac{1}{2}(1+s \hat{Q})$, to satisfy NSIT.

- In $\operatorname{NIM}_{p w}$, the non-invasively measured $\left\langle Q_{1}\right\rangle,\left\langle Q_{2}\right\rangle$ and C_{12} determine the quasi-probability

$$
q\left(s_{1}, s_{2}\right)=\operatorname{Re} \operatorname{Tr}\left(P_{s_{2}}\left(t_{2}\right) P_{s_{1}}\left(t_{1}\right) \rho\right) .
$$

It formally satisfies NSIT but can be negative.

6.2 Sequential Measurements vs Quasi-probability

The sequential measurement probability p and quasi-probability q are related by

$$
p\left(s_{1}, s_{2}\right)=q\left(s_{1}, s_{2}\right)+\frac{1}{8}\left\langle\left[\hat{Q}_{1}, \hat{Q}_{2}\right] \hat{Q}_{1}\right\rangle s_{2}
$$

- NSIT for $p\left(s_{1}, s_{2}\right) \Longrightarrow$ zero interference $\Longrightarrow q\left(s_{1}, s_{2}\right) \geq 0$.
- However, MRps may hold, $q\left(s_{1}, s_{2}\right) \geq 0$, but NSIT fails.
- $q\left(s_{1}, s_{2}\right) \geq 0$ requires only that the interferences are bounded.
- Similarly at three times: $\mathrm{MR}_{\text {strong }}$ requires zero interference but $\mathrm{MR}_{\text {weak }}$ allows non-zero interferences.

Summary so Far

There exist two natural notions of NIM, piecewise and sequential, and two corresponding sets of necessary and sufficient conditions for MR.

- $\mathrm{NIM}_{p w}$: moments are measured in a number of non-invasive experiments and the results of partial snapshots combined.

$$
\mathrm{MR}_{\text {weak }}=\mathrm{NIM}_{p w} \wedge \mathrm{LG}_{12} \wedge \mathrm{LG}_{23} \wedge \mathrm{LG}_{13} \wedge \mathrm{LG}_{123} \wedge \text { Ind }
$$

Requires bounded interference. Direct tests of MRps. Elevates $L G$ to a decisive test for MR.

- $\mathrm{NIM}_{\text {seq }}$: sequential measurements are made at three times in a single experiment.

$$
\mathrm{MR}_{\text {strong }}=\operatorname{NSIT}_{(1) 23} \wedge \operatorname{NSIT}_{1(2) 3} \wedge \operatorname{NSIT}_{(2) 3} \wedge \text { Ind }
$$

Requires zero interference. Tests a combination or MRps and NIM.

7.1 Modified Ideal Negative Measurements

- Ideal negative measurements: the detector is coupled to $Q=+1$ at the first time. A null result implies $Q=-1$.
- INMs still collapses the wave function so NSIT fails:

$$
\sum_{s_{1}} p_{12}\left(s_{1}, s_{2}\right) \neq p_{2}\left(s_{2}\right)
$$

How do we check experimentally that INMs are non-invasive?

- The value of C_{12} is insensitive to diagonalization at t_{1}.
- Introduce a briefly acting decoherence mechanism at t_{1}. (E.g. use the ancilla to perform a blind measurement). NSIT becomes satisfied - fails due to clumsiness. (JJH, 2019).

7.2 Continuous in Time Velocity Measurement (CTVM)

- First note that

$$
C_{12}=\left\langle Q_{1} Q_{2}\right\rangle=1-\frac{1}{2}\left\langle\left[Q_{2}-Q_{1}\right]^{2}\right\rangle
$$

- Assume there exists a velocity $v(t)=\dot{Q}(t)$.

$$
Q_{2}-Q_{1}=\int_{t_{1}}^{t_{2}} d t v(t) .
$$

RHS can be measured using a weak coupling λ to a detector continuous in time.

- Assume that $Q(t)$ changes sign at most once during $\left[t_{1}, t_{2}\right]$. This is reasonable in some models and includes regimes in which there is substantial LG violation.

JJH, Phys Rev A 94, 052114 (2016). Measured by Majidy, Katiyar and Laflamme.

7.3 CTVM/Waiting Detector

For illustrative purposes suppose $Q=\operatorname{sign}(X)$.

The effect of interest, $p(|1\rangle)$, is of order λ^{2} but the back-action disturbance is order λ^{4}, so is approximately non-invasive for $\lambda \ll 1$.

Summary

- Necessary and sufficient conditions for MR using augmented LG inequalities.
- Alternative methods for non-invasive measurements.
- Generalizations of LG to more times and higher order correlators.

All of the above are of interest to test experimentally. Some progress has been made (Majidy, Katiyar, Laflamme).

2.6 Comments

- The LG framework seeks to rule out certain types of hidden variable theories. Most formulations rule out only HV theories of the GRW type.
- It does not rule out de Broglie-Bohm type theories, unless locality can be invoked (Maroney and Timpson, 2014; Bacciagalupi 2014).
- The NS relations

$$
\sum_{s_{1}} p\left(s_{1}, s_{2}\right)=p\left(s_{2}\right)=\sum_{s_{3}} p\left(s_{2}, s_{3}\right)
$$

do NOT hold in general in LG tests. Fine's theorem does not hold and LG inequalities are a necessary but not sufficient condition for MR.

