Title: Leggett-Garg Inequalities: Decisive Tests for Macrorealism and Protocols for Non-Invasive Measurements

Speakers: Jonathan Halliwell

Series: Perimeter Institute Quantum Discussions

Date: March 06, 2019 - 4:00 PM

URL: http://pirsa.org/19030101

Abstract: The Leggett-Garg (LG) inequalities were introduced, as a temporal parallel of the Bell inequalities, to test macroscopic realism -- the view that a macroscopic system evolving in time possesses definite properties which can be determined without disturbing the future or past state. The talk will begin with a review of the LG framework. Unlike the Bell inequalities, the original LG inequalities are only a necessary condition for macrorealism, and are therefore not a decisive test. I argue, for the case of measurements of a single dichotomic variable Q, that when the original four three-time LG inequalities are augmented with a set of twelve two-time inequalities also of the LG form, Fine's theorem applies and these augmented conditions are then both necessary and sufficient [1]. A comparison is carried out with the alternative necessary and sufficient conditions for macrorealism based on no-signaling in time conditions which ensure that all probabilities for Q at one and two times are independent of whether earlier or intermediate measurements are made. I argue that the two tests differ in their implementation of the key requirement of non-invasive measurability so are testing different notions of macrorealism, and these notions are elucidated. I also describe some alternative protocols which achieve non-invasiveness, one involving continuous measurement of the velocity conjugate to Q [2], which was recently implemented in an experiment at IQC, the other involving a modification of the standard ideal negative measurement protocol [3].

[1] J.J.Halliwell, Phys Rev A96, 012121 (2017); A93, 022123 (2016); arxiv:1811.10408.

[2] J.J.Halliwell, Phys. Rev. A94, 052114 (2016).

[3] J.J.Halliwell, Phys. Rev. A99, 022119 (2019).

Leggett-Garg Inequalities: Decisive Tests for Macrorealism and Protocols for Non-Invasive Measurements

Jonathan Halliwell

Imperial College London

Perimeter Institute 6.3.19

Macroscropic Realism: Is the Moon Really There When No-one Looks?

Can a quantum system be thought of as following a definite trajectory?

Can macroscopic systems exist in superposition states?

- Relates to questions of classicality conditions in quantum theory – there is a hierarchy of such conditions.
- Macrorealism is, perhaps, the weakest notion of classicality. The Leggett-Garg inequalities were designed to test it.
- There exist other tests of macrorealism no-signaling in time and coherence witness conditions – which are stronger.

This Talk

- Review of the Leggett-Garg Framework
- Extension of the LG Framework a decisive and richer test of macrorealism. Clearer parallel to Bell experiments.
- Comparison with alternative, stronger conditions for macrorealism.
- Alternative methods for non-invasive measurements.

Based on: JJH, Phys Rev A93, 022123 (2016); A 94, 052131 (2016); A 94, 052114 (2016); A96, 012121 (2017); A99, 022119 (2019).

Current experiment: Shayan Majidy, Hement Katiyar and Raymond Laflamme

Outline

- 1. EPRB experiment, CHSH inequalities, Fine's theorem.
- 2. Macrorealism and Leggett-Garg tests.
- 3. Two-time measurements.
- 4. Conditions for macrorealism using extended Leggett-Garg inequalities.
- 5. Conditions for macrorealism using no-signaling in time.
- 6. Quantum-mechanical probabilities.
- 7. Non-invasive measurements

1.1 The EPRB Experiment

Figure: Testing Local Realism using the EPRB experiment. Measurements are made of $p(s_1, s_3), p(s_1, s_4), p(s_2, s_3), p(s_2, s_4)$, where $s_i = \pm 1$.

1.2 EPRB and the CHSH Inequalities

• $p(s_1, s_3), p(s_1, s_4), p(s_2, s_3), p(s_2, s_4)$ satisfy no signaling (NS):

$$\sum_{s_1} p(s_1, s_3) = p(s_3) = \sum_{s_2} p(s_2, s_3), \quad etc.$$

• Seek a probability $p(s_1, s_2, s_3, s_4)$ such that

$$p(s_1,s_3) = \sum_{s_2,s_4} p(s_1,s_2,s_3,s_4), \;\; etc.$$

• If such a probability exists then the correlation functions

$$C_{ij} = \sum_{s_1, s_2, s_3, s_4} s_i s_j \ p(s_1, s_2, s_3, s_4),$$

satisfy the eight CHSH inequalities, e.g.

$$-2 \leq C_{13} + C_{14} + C_{23} - C_{24} \leq 2.$$

1.3 Fine's Theorem

Fine's theorem: The eight CHSH inequalities plus the NS conditions, are also a sufficient condition for the construction of $p(s_1, s_2, s_3, s_4)$

- CHSH inequalities together with the NS conditions are a necessary and sufficient condition for Local Realism.
- Similarly for three measurements and the Bell inequalities,

$$1 + C_{12} + C_{23} + C_{13} \ge 0$$

(plus three more).

- The existence of the probability p(s₁, s₂, s₃, s₄) is deduced indirectly from the partial snapshots p(s₁, s₃), p(s₁, s₄), p(s₂, s₃), p(s₂, s₄) it is not explicitly measured.
- QM can sometimes supply candidate underlying probabilities (e.g. DH approach). CHSH then implies bounds on the interference.

DQC

- 1. EPRB experiment, CHSH inequalities, Fine's theorem.
- 2. Macrorealism and Leggett-Garg tests.
- 3. Two-time measurements.
- 4. Conditions for macrorealism using extended Leggett-Garg inequalities.
- 5. Conditions for macrorealism using no-signaling in time.
- 6. Quantum-mechanical probabilities.
- 7. Non-invasive measurements

(ロ) (四) (四) (1000)

2.1 Macrorealism and Leggett-Garg Tests

The LG inequalities (Leggett and Garg, 1985) entail sequential measurements in time on a single system. They are designed to test Macrorealism (MR):

- 1. Macrorealism per se (MRps): the system is in a definite state at each moment of time;
- 2. Non-invasive measurability (NIM): the state can be measured without disturbing the subsequent dynamics;
- 3. Induction (Ind): future measurements do not affect the present state.

We write $MR = MRps \wedge NIM \wedge Ind$.

Review: Emary, Lambert and Nori (2014) Critique: Maroney and Timpson (2014)

> ・ロト 4 酉 ト 4 巻 ト 4 巻 ト 巻 - のへで 9/41

2.2 The Leggett-Garg Inequalities

• Measurements are made of a single variable $Q = \pm 1$ at pairs of times $t_1 < t_2 < t_3 < t_4$, to determine the four pairwise probabilities $p(s_i, s_j)$ and hence C_{ij} (for ij = 12, 23, 34, 14).

2.3 LG Violations in a Simple Spin Model

• Take $\hat{Q} = \mathbf{a} \cdot \sigma$ and Hamiltonian $H = \frac{1}{2}\omega\sigma_x$. We find

$$egin{array}{rcl} \mathcal{C}_{12} &=& rac{1}{2} \langle \hat{Q}(t_1) \hat{Q}(t_2) + \hat{Q}(t_2) \hat{Q}(t_1)
angle = \mathbf{a}(t_1) \cdot \mathbf{a}(t_2) \ &=& \cos \omega (t_2 - t_1) \end{array}$$

closely analogous to EPRB.

• LG inequalities with $t_1 = t, t_2 = 2t, t_3 = 3t, t_4 = 4t$ are

 $-2 \leq 3\cos\omega t - \cos 3\omega t \leq 2$

Maximal violation of $2\sqrt{2}$ at $\omega t = \pi/4$.

• Similar results for models with higher dimensional Hilbert spaces.

2.3 LG Violations in a Simple Spin Model

• Take $\hat{Q} = \mathbf{a} \cdot \sigma$ and Hamiltonian $H = \frac{1}{2}\omega \sigma_x$. We find

$$egin{array}{rcl} \mathcal{C}_{12} &=& rac{1}{2} \langle \hat{Q}(t_1) \hat{Q}(t_2) + \hat{Q}(t_2) \hat{Q}(t_1)
angle = \mathbf{a}(t_1) \cdot \mathbf{a}(t_2) \ &=& \cos \omega (t_2 - t_1) \end{array}$$

closely analogous to EPRB.

• LG inequalities with $t_1 = t, t_2 = 2t, t_3 = 3t, t_4 = 4t$ are

 $-2 \leq 3\cos\omega t - \cos 3\omega t \leq 2$

Maximal violation of $2\sqrt{2}$ at $\omega t = \pi/4$.

• Similar results for models with higher dimensional Hilbert spaces.

2.4 Non-invasive Measurements

Ideal negative measurements: the detector is coupled to Q = +1at the first time. A null result implies Q = -1. (Knee et al, 2012; Robens et al. 2015; Katiyar et al 2016)

This eliminates alternative explanations by classical models with invasiveness. (Montina, 2012; Yearsley, 2013).

Ideal negative measurements still cause wave function collapse!

Measurement of $p(s_1, s_2)$ typically involves an ancilla whose state becomes entangled with Q at t_1 , i.e. we have two systems each with 2 (or more) states, hence the similarity to EPRB.

Weak measurements are frequently used. Although the disturbance can be made very small the effect measured is (often) of the same order of magnitude. (Palacios-Laloy et al, 2010)

2.5 Aside: A Simple Direct Connection to the EPRB Case

Suppose the LG system is particle A of an EPRB pair (with a magnetic field near A for t > t₁).

2.6 Comments

- The LG framework seeks to rule out certain types of hidden variable theories. Most formulations rule out only HV theories of the GRW type.
- It does not rule out de Broglie-Bohm type theories, unless locality can be invoked (Maroney and Timpson, 2014; Bacciagalupi 2014).
- The NS relations

$$\sum_{s_1} p(s_1, s_2) = p(s_2) = \sum_{s_3} p(s_2, s_3)$$

do NOT hold in general in LG tests. Fine's theorem does not hold and LG inequalities are a necessary but not sufficient condition for MR.

- 1. EPRB experiment, CHSH inequalities, Fine's theorem.
- 2. Macrorealism and Leggett-Garg tests.
- 3. Two-time measurements.
- 4. Conditions for macrorealism using extended Leggett-Garg inequalities.
- 5. Conditions for macrorealism using no-signaling in time.
- 6. Quantum-mechanical probabilities.
- 7. Non-invasive measurements

3.1 No Signaling in Time (NSIT)

The analogue of NS in EPRB for temporal correlations is the NSIT condition (Brukner and Kofler, 2013):

$$\sum_{s_1} p_{12}(s_1, s_2) = p_2(s_2)$$

- It characterizes both NIM and MRps at two times. When it holds Fine's theorem applies.
- NSIT is not satisfied in general by QM for sequential measurements.
- Brukner and Kofler (2013) and Clemente and Kofler (2015) sought alternative definitions of MR using a set of NSIT conditions only, without the LG inequalities.

There is a different way of meeting Fine's theorem using a different implementation of NIM avoiding sequential measurements. 😱 🚬 🕤 🤉

3.2 Key Issue – Probability Distributions at Two Times

- Since [Q̂(t₁), Q̂(t₂)] ≠ 0, the existence of p(s₁, s₂) at the two-time level in the LG framework is not guaranteed.
- I.e. MR may fail already at the two time level unlike EPRB.
- If a MR description exists, there could be a number of different ways of assigning probabilities to such pairs of observables.
- Different probability assignments correspond to different measurement protocols and potentially different implementations of NIM.
- Look for alternative ways to determine

$$p_{12}(s_1, s_2) = \frac{1}{4} \left(1 + \langle Q_1 \rangle s_1 + \langle Q_2^{(1)} \rangle s_2 + C_{12} s_1 s_2 \right).$$

3.3 Checking MR at the Two-Time Level

- We proceed indirectly. Measure (Q₁), (Q₂) and C₁₂ (respecting NIM) in three different experiments.
- Attempt to construct the probability from its moments:

$$q(s_1,s_2)=rac{1}{4}\left(1+\langle Q_1
angle s_1+\langle Q_2
angle s_2+\mathcal{C}_{12}s_1s_2
ight)$$

• In a MR theory, we must have,

$$(1 + s_1 Q_1)(1 + s_2 Q_2) \ge 0,$$

and averaging we obtain the two-time LG inequalities:

 $q(s_1,s_2)\geq 0.$

- Since NIM is assumed satisfied, q(s₁, s₂) is a measure of MRps only (unlike the usual NSIT condition).
- If $q(s_1, s_2) < 0$, MRps fails at the two-time level.

3.4 NIM Comes in Two Types

There are TWO natural implementations of NIM. They correspond to different notions of MR.

- Piecewise NIM_{pw}: do numerous experiments to measure all the moments with NIM satisfied in each individual experiment. q(s₁, s₂) is deduced indirectly.
- Sequential NIM_{seq}: p(s₁, s₂) is determined by sequential measurements in a single experiment. NIM is imposed via the NSIT condition:

$$\sum_{s_1} p_{12}(s_1,s_2) = p_2(s_2)$$

3.4 NIM Comes in Two Types

There are TWO natural implementations of NIM. They correspond to different notions of MR.

- Piecewise NIM_{pw}: do numerous experiments to measure all the moments with NIM satisfied in each individual experiment. q(s₁, s₂) is deduced indirectly.
- Sequential NIM_{seq}: p(s₁, s₂) is determined by sequential measurements in a single experiment. NIM is imposed via the NSIT condition:

$$\sum_{s_1} p_{12}(s_1,s_2) = p_2(s_2)$$

4.1 Two Routes to Defining Macrorealism at Three Times

- Piecewise NIM_{pw} : do numerous different non-invasive measurements of the moments. The existence of the probabilities $q(s_i, s_j)$, $p(s_1, s_2, s_3)$, is deduced indirectly.
- Sequential NIM_{seq}: measurements are made at all three times in a single experiment and the probability p(s₁, s₂, s₃) is measured directly. NSIT conditions are imposed to ensure NIM.

4.2 Defining Macrorealism with LG Inequalities for Three Times

Use NIM_{pw}: Measure C_{12} , C_{23} , C_{13} non-invasively and $\langle Q_1 \rangle$, $\langle Q_2 \rangle$, $\langle Q_3 \rangle$ in six experiments.

 Look for an underlying probability p(s₁, s₂, s₃) matching them, in 3 steps:

$$egin{array}{rll} p(s_i) &=& rac{1}{2}\left(1+s_i\langle Q_i
angle
ight)\geq 0. \ q(s_i,s_j) &=& rac{1}{4}\left(1+s_i\langle Q_i
angle+s_j\langle Q_j
angle+s_is_jC_{ij}
ight) \end{array}$$

• $q(s_i, s_j) \ge 0$ for a MR theory, but can be negative in QM.

q(s_i, s_j) formally satisfies "NSIT", by construction ⇒ conditions for Fine's theorem are met. E.g.,

$$\sum_{s_1} q(s_1, s_2) = p(s_2) = \sum_{s_3} q(s_2, s_3)$$

This says nothing about signaling.

4.3 MR from LGI continued

We now have an exact mathematical parallel with Bell case:
 p(s₁, s₂, s₃) exists if and only if the following 16 inequalities
 hold. The usual 4 three-time LG inequalities

together with the 12 two-time LG inequalities,

$$1+s_i \langle Q_i
angle+s_j \langle Q_j
angle+s_i s_j C_{ij} \geq 0.$$

• These test a particular version of MR:

 $MR_{weak} = NIM_{pw} \wedge LG_{12} \wedge LG_{23} \wedge LG_{13} \wedge LG_{123} \wedge Ind$

• Similarly for four-time LG inequalities.

4.4 MR from LGI: Comments

- The 12 two-time LG inequalities provide the extra restrictions that elevate the usual three-time inequalities from necessary to necessary and sufficient conditions for MR.
- Recent experiments could be readily adapted to carry out this decisive test of MR by including measurements of (Q₁), (Q₂), (Q₃).
- See current experiment by Majidy, Katiyar and Laflamme.
- Many LG experiments to date already test certain two-time LG inequalities, using simplifications such as $Q_1 = 1$, since

$$1 + C_{12} + C_{23} + C_{13} \ge 0,$$

becomes

$$1+\langle \mathcal{Q}_2
angle+\langle \mathcal{Q}_3
angle+\mathcal{C}_{23}\geq 0.$$

4.5 MR from LGI: Generalizations

• Generalizations of the LG inequalities to *n*-times:

$$C_{12} + C_{23} + \cdots + C_{n-2,n-1} - C_{n-1,n} \le n-2$$

plus all possible variants with an odd number of minus signs. Fine's theorem generalizes (JJH and Mawby, 2019).

- LG experiments which measure higher-order correlation functions, such as D₁₂₃ = (Q₁Q₂Q₃), have been carried out (Bechtold et al, 2016).
- The necessary and sufficient conditions for MR are then the eight conditions of the form (JJH, 2019):

$$1 + \langle Q_1 \rangle + \langle Q_2 \rangle + \langle Q_3 \rangle + C_{12} + C_{13} + C_{23} + D_{123} \ge 0.$$

5.1 Defining Macrorealism with NSIT Conditions

Use NIM_{seq}: Measure Q_1 , Q_2 and Q_3 in a single experiment. Require that $p_{123}(s_1, s_2, s_3)$ is a probability for three independent variables. Impose:

$$\begin{split} \text{NSIT}_{(1)23} &: \sum_{s_1} p_{123}(s_1, s_2, s_3) &= p_{23}(s_2, s_3) \\ \text{NSIT}_{1(2)3} &: \sum_{s_2} p_{123}(s_1, s_2, s_3) &= p_{13}(s_1, s_3) \\ \text{NSIT}_{(2)3} &: \sum_{s_2} p_{23}(s_2, s_3) &= p_{3}(s_3) \end{split}$$

These test a strong notion of MR:

$$\begin{aligned} \mathrm{MR}_{strong} &= \mathrm{NIM}_{seq} \wedge \mathrm{MRps} \wedge \mathrm{Ind} \\ &= \mathrm{NSIT}_{(1)23} \wedge \mathrm{NSIT}_{1(2)3} \wedge \mathrm{NSIT}_{(2)3} \wedge \mathrm{Ind} \end{aligned}$$

(Clemente and Kofler 2015, 2016; Maroney and Timpson, 2014)

5.2 NSIT Conditions vs LG Inequalities

- NSIT conditions define MR using equalities, whereas the LG framework defines MR using inequalities.
- NSIT conditions are checking both NIM_{seq} and MRps.
- In the LG framework $\mathrm{NIM}_{\textit{pw}}$ holds by design, so tests MRps directly.
- This is why MR_{strong} seems to involve much more stringent conditions than MR_{weak}.
- Can also consider an intermediate version of MR:

 $MR_{int} = NSIT_{(1)2} \land NSIT_{(2)3} \land NSIT_{(1)3} \land LG_{123} \land Ind$

Clearly

$$MR_{strong} \implies MR_{int} \implies MR_{weak}$$

6.1 QM Two-Time Measurement Formulae

• NIM_{seq} involves requiring the standard measurement formula

$$p(s_1, s_2) = \operatorname{Tr} \left(P_{s_2}(t_2) P_{s_1}(t_1) \rho P_{s_1}(t_1) \right)$$

where $P_s = \frac{1}{2}(1 + s\hat{Q})$, to satisfy NSIT.

• In NIM_{pw}, the non-invasively measured $\langle Q_1 \rangle$, $\langle Q_2 \rangle$ and C_{12} determine the quasi-probability

$$q(s_1, s_2) = \operatorname{Re} \operatorname{Tr} (P_{s_2}(t_2) P_{s_1}(t_1) \rho).$$

It formally satisfies NSIT but can be negative.

6.2 Sequential Measurements vs Quasi-probability

The sequential measurement probability p and quasi-probability q are related by

$$p(s_1, s_2) = q(s_1, s_2) + rac{1}{8} \langle [\hat{Q}_1, \hat{Q}_2] \hat{Q}_1
angle s_2$$

- NSIT for $p(s_1, s_2) \implies$ zero interference $\implies q(s_1, s_2) \ge 0$.
- However, MRps may hold, $q(s_1, s_2) \ge 0$, but NSIT fails.
- $q(s_1, s_2) \ge 0$ requires only that the interferences are bounded.
- Similarly at three times: MR_{strong} requires zero interference but MR_{weak} allows non-zero interferences.

Summary so Far

There exist two natural notions of NIM, piecewise and sequential, and two corresponding sets of necessary and sufficient conditions for MR.

• NIM_{pw}: moments are measured in a number of non-invasive experiments and the results of partial snapshots combined.

 $MR_{weak} = NIM_{pw} \wedge LG_{12} \wedge LG_{23} \wedge LG_{13} \wedge LG_{123} \wedge Ind$

Requires bounded interference. Direct tests of MRps. Elevates LG to a decisive test for MR.

• NIM_{seq}: sequential measurements are made at three times in a single experiment.

 $MR_{strong} = NSIT_{(1)23} \land NSIT_{1(2)3} \land NSIT_{(2)3} \land Ind$

Requires zero interference. Tests a combination or MRps and NIM.

7.1 Modified Ideal Negative Measurements

- Ideal negative measurements: the detector is coupled to Q = +1 at the first time. A null result implies Q = -1.
- INMs still collapses the wave function so NSIT fails:

$$\sum_{s_1} p_{12}(s_1,s_2)
eq p_2(s_2)$$

How do we check experimentally that INMs are non-invasive?

- The value of C_{12} is insensitive to diagonalization at t_1 .
- Introduce a briefly acting decoherence mechanism at t₁. (E.g. use the ancilla to perform a blind measurement). NSIT becomes satisfied fails due to clumsiness. (JJH, 2019).

・ロ> < 部 > < き > < き > き の へ で 34 / 41

7.2 Continuous in Time Velocity Measurement (CTVM)

• First note that

$$\mathcal{C}_{12}=\langle \mathcal{Q}_1\mathcal{Q}_2
angle=1-rac{1}{2}\langle [\mathcal{Q}_2-\mathcal{Q}_1]^2
angle$$

• Assume there exists a velocity $v(t) = \dot{Q}(t)$.

$$Q_2 - Q_1 = \int_{t_1}^{t_2} dt \ v(t).$$

RHS can be measured using a weak coupling λ to a detector continuous in time.

 Assume that Q(t) changes sign at most once during [t₁, t₂]. This is reasonable in some models and includes regimes in which there is substantial LG violation.

JJH, Phys Rev A 94, 052114 (2016). Measured by Majidy, Katiyar and Laflamme.

7.3 CTVM/Waiting Detector

For illustrative purposes suppose $Q = \operatorname{sign}(X)$.

The effect of interest, $p(|1\rangle)$, is of order λ^2 but the back-action disturbance is order λ^4 , so is approximately non-invasive for $\lambda \ll 1$.

Summary

- Necessary and sufficient conditions for MR using augmented LG inequalities.
- Alternative methods for non-invasive measurements.
- Generalizations of LG to more times and higher order correlators.

All of the above are of interest to test experimentally. Some progress has been made (Majidy, Katiyar, Laflamme).

2.6 Comments

- The LG framework seeks to rule out certain types of hidden variable theories. Most formulations rule out only HV theories of the GRW type.
- It does not rule out de Broglie-Bohm type theories, unless locality can be invoked (Maroney and Timpson, 2014; Bacciagalupi 2014).
- The NS relations

$$\sum_{s_1} p(s_1, s_2) = p(s_2) = \sum_{s_3} p(s_2, s_3)$$

do NOT hold in general in LG tests. Fine's theorem does not hold and LG inequalities are a necessary but not sufficient condition for MR.