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e Kerr-Schild black holes and the superposed ones
@ Solving the constraints as an initial-boundary value problem

© Input parameters and ADM charges
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Motivations

Motivations:

GW observations:

@ inspiral and merger of binary black holes is of distinguished importance for
the emerging field of gravitational wave astronomy

@ non-linearities necessitate the use of accurate numerical approaches in
determining the emitted waveforms

@ precision of these simulations—in particular, their initializations—is of critical

importance in enhancing the detection of gravitational wave signals

Istvdn Rdcz (University of Warsaw & Wigner RCP) Pl, 6 March 2019 3123
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Motivations

Motivations:

GW observations:

@ inspiral and merger of binary black holes is of distinguished importance for
the emerging field of gravitational wave astronomy

@ non-linearities necessitate the use of accurate numerical approaches in
determining the emitted waveforms

@ precision of these simulations—in particular, their initializations—is of critical
importance in enhancing the detection of gravitational wave signals

y
Based on:

@ |. Racz: Constraints as evolutionary systems, Class. Quantum Grav. 33 015014 (2016);
[arXiv:1508.01810]

I. Racz: A simple method of constructing binary black hole initial data, Astronomy Reports
62 953-958 (2018); [arXiv:1605.01669]

|. Racz: Supplemental Material (2016) : http://www.kfki.hu/~iracz/ SM-BH-data.pdf
|. Rdcz: On the ADM charges of multiple black holes , [arXiv:1608.02283]
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Intitialization:

Motivations

The constraints:

@ vacuum initial data:

e evolution equations £, hi; = .... & LrKij = .... (inanalogyx=v & v="f)

(Pij, Kij)

on a 3-dimensional manifold

)

Istvdn Rdacz (University of Warsaw & Wigner RCP)

Pl, 6 March 2019
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Motivations

Intitialization:

The constraints:

@ vacuum initial data: | (hij, /;;) | on a 3-dimensional manifold | %

e evolution equations £, hi; = .... & LrKij = .... (inanalogyx=v & v="f)

(3)

R+ (K%)? - KK =0
DCK’EG- = DaI{ec =0

where D, denotes the covariant derivative operator associated with A

@ it is an underdetermined system: 4 equations for 12 variables

Istvdn Rdcz (University of Warsaw & Wigner RCP) Pl, 6 March 2019
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Motivations

The conformal (elliptic) method:

Lichnerowicz A (1944) and York J W (1972):

Istvdn Rdcz (University of Warsaw & Wigner RCP) Pl, 6 March 2019 B /23
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Motivations

The conformal (elliptic) method:

Lichnerowicz A (1944) and York J W (1972):

@ replace

hi; = g’/)"1 ey sl s = % fii; K’l[ = d)_z s

using these variables the constraints are put into the semilinear elliptic system

Istvdn Rdcz (University of Warsaw & Wigner RCP) Pl, 6 March 2019
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Motivations

The conformal (elliptic) method:

Lichnerowicz A (1944) and York J W (1972):

@ replace

h ij = d)d h»j_j and K’-j_j — % h-;’j Kbl[ = ([)_2 K’,’j

using these variables the constraints are put into the semilinear elliptic system

D'Dip— § R¢

+ 3 Ky K997 — 45 (K')*¢° =0

12

~

where f); e

K ij = R'E[;L] == I?EZT]

. where

S~

K = D.X; + D;X; - 2hy; D' X,

D'DiX; + 3 Di(D'X) + Ri' Xy — 2 ¢5Dy(KY) = 0

Istvdn Rdacz (University of Warsaw & Wigner RCP)

Pl, 6 March 2019
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Motivations

The conformal (elliptic) method:

Lichnerowicz A (1944) and York J W (1972):

@ replace

h ij = d)d h»j_j and K’-j_j — % h-;’j Kbl[ = ([)_2 K’,’j

using these variables the constraints are put into the semilinear elliptic system
)

D'Dip— g Rp+ § Kij K9 ¢~7 — £ (K'1)2¢° = 0

~

where f); e

S~

fi'ij — f\g’] -+ I:l[ff] , where I"'?-[‘f] = ﬁ.in = ﬁin = %H-ijﬁle

D'DiX; + 3 Di(D'X) + Ri' Xy — 2 ¢5Dy(KY) = 0

‘ (i, K-u)‘ <—> ‘ ((Jbﬁw; KX, ﬂfﬂ) ‘

Istvdn Rdcz (University of Warsaw & Wigner RCP) Pl, 6 March 2019 5 /23

Pirsa: 19030100 Page 11/47



Motivations

The conformal method:

Impressive mathematical developments since 1944 but ...

Istvdn Rdcz (University of Warsaw & Wigner RCP) Pl, 6 March 2019 6/23
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Motivations

The conformal method:

Impressive mathematical developments since 1944 but ...

@ either “constancy” of K'; or “smallness” of the TT part of I;’.,;;,' is required

@ it is highly implicit due to its elliptic character and the replacements h;; = ¢* E,,
and K;; = % (f_)4 Rij fiblg + ¢ '2 K el

e no direct control on the physical parameters of the initial data specifications

@ boundary conditions:

Istvdn Rdcz (University of Warsaw & Wigner RCP) Pl, 6 March 2019 6/23
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Motivations

The conformal method:

Impressive mathematical developments since 1944 but ...

@ either “constancy” of K'; or “smallness” of the TT part of I;,, is required
@ it is highly implicit due to its elliptic character and the replacements h;; = ¢* E,,
and K;; = % (].’)4 I;U Fo g ) o f&;ij =
e no direct control on the physical parameters of the initial data specifications

@ boundary conditions:

e are known to influence solutions everywhere in their domains

e the inner boundary conditions—they are applied with excision in the black
hole interior—cannot simply be supported by intuition (trumpet data ... )

e Bowen-York type initial data: }zij is flat }.J;ij = and KY=0

Istvdn Rdacz (University of Warsaw & Wigner RCP) , 6 March 2019 6/23
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The parabolic-hyperbolic form of the constrains

New variables by applying 2 + 1 decompositions:

Splitting of the metric h;;:

assume: xR o

> is smoothly foliated by a one-parameter family of two-surfaces .#, :
p = const level surfaces of a smooth real function p: ¥ — R with 9;p # 0

A~ A~

— 'm,=Nap ... & . bt — w=hYn — . =0"—nwn,

@ choose p' to be a vector field on ¥ : the integral curves... & |p'Odip =1

e ‘lapse’ and ‘shift’ of p'

pi=Na'+ N, where N=pif;, and Ni=7p

Istvdn Rdcz (University of Warsaw & Wigner RCP) Pl, 6 March 2019 7./23
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The parabolic-hyperbolic form of the constrains

New variables by applying 2 + 1 decompositions:

Splitting of the metric h;;:

assume: Y= IR X

> is smoothly foliated by a one-parameter family of two-surfaces .7, :
p = const level surfaces of a smooth real function p: ¥ — R with 9;p # 0

— | M =Nagp .. &.... i — w=hiYn; — 5. =0". — 'R,

e choose p’ to be a vector field on ¥ : the integral curves... & |p'Oip =1

e ‘lapse’ and ‘shift’ of p’

~

pt = Npu'+ Ntoe Wwhere IN=p'n. and Nt=72¢ p!

@ induced metric, extrinsic curvature and acceleration of the ., level surfaces:

S o 5 T e R o R~ AT
Y= G gl K= s 2o ’n,,-_ =neN.n. =—D. InlN

@ the metric h;; can then be given as

hi; = Yig + 05 = NN

Istvdn Racz (University of Warsaw & Wigner RCP) Pl, 6 March 2019 7./23
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The parabolic-hyperbolic form of the constrains
¢ - ) X
2 + 1 decompositions:

Splitting of the symmetric tensor field K;:

Iiij = Kknin; -+ [}Ri_ kj -+ ;T?,j k,} -+ Ki.j

k=1 Ky, ki=7%7"'Ky and K;; =7%7"; Ky

e the trace and trace free parts of K;;

Kl,[ = ﬁkl Kkg and Io(ij

Istvdn Rdcz (University of Warsaw & Wigner RCP) Pl, 6 March 2019
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The parabolic-hyperbolic form of the constrains

2 + 1 decompositions:

Splitting of the symmetric tensor field K;;:

K;; = knin; + [0 k; + 7, k] + K;;

si=itn B k= ;fkiﬁl K and K = ﬁkﬁlj K

e the trace and trace free parts of K;;

Kl,[ = ;y\kl Kkg and

The new variables:

-h"i'alfi") — ﬁ! jf\x]ﬁisﬁi"; Raki!KthO{'i‘
J J . J J

e these variables retain the physically distinguished nature of h;; and K;;
—=y !_TVH-#

Istvdn Rdcz (University of Warsaw & Wigner RCP) Pl, 6 March 2019 8/23
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The parabolic-hyperbolic form of the constrains

The parabolic-hyperbolic form of the constraints:

An evolutionary system for the constrained fields N, k; and K/;:

K [(8,N) - N (D,N)| - N*(D'D,N) - AN -BN?*=0
Lk — 1 Di(KY) — Dk + D'Ky + NK ki + [k — 1 (KY) |7 — 2t Ky = 0
LK) - D'k — NK [k - L (KY) ]+ NKuK* + 27k =0,

where 13, denotes the covariant derivative operator associated with 7;;

*

K = 17947, — D;NJ

= Jp% j Buﬁw
A= (9,K) - N DiK) +
B=—1[R+2r(KY)+ %(K%)Q ~ 2Kk ~ Ky KH]

sity of Warsaw & Wigner RCP)
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The parabolic-hyperbolic form of the constrains

The parabolic-hyperbolic form of the constraints:

An evolutionary system for the constrained fields N, k; and K/;:

K [(8,N) - N (D,N)| - N*(D'D,N) - AN -BN?*=0
Lk — 1 Di(KY) — Dk + D'Ky + NK ki + [k — 1 (KY) |7 — 2t Ky = 0
LK) - D'k — NK [k - L (KY) ]+ NKuK* + 27k =0,

where 13, denotes the covariant derivative operator associated with 7;;

*

K = 17947, — D;NJ

= Jp% j Buﬁw
A= (9,K) - N DiK) +
B=—1[R+2r(KY)+ %(K%)Q ~ 2Kk ~ Ky KH]

sity of Warsaw & Wigner RCP)
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The parabolic-hyperbolic form of the constrains

The parabolic-hyperbolic system:

The parabolic-hyperbolic system:

@ no restriction on N'i?%‘ij, k and K;; > they are freely specifiable on 3

@ the parabolic equation is uniformly parabolic in those subregions of 3., where
*
K is either positive or negative

o K depends exclusively on the freely specifiable fields 7;; and Nt =
its sign can be tailored according to the desire of the investigated problem

Istvdn Rdacz (University of Warsaw & Wigner RCP) Pl, 6 March 2019 10 /23
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The parabolic-hyperbolic form of the constrains

The parabolic-hyperbolic system:

The parabolic-hyperbolic system:

. . A.‘ —~ o] "
@ no restriction on | N',75;;,k and K;; > they are freely specifiable on %

@ the parabolic equation is uniformly parabolic in those subregions of 3., where
H
K is either positive or negative

o K depends exclusively on the freely specifiable fields 7;; and Nt =
its sign can be tailored according to the desire of the investigated problem

e the combined evolutionary system is (locally) well-posed

o if suitable initial values for the constrained fields | N, k, and K/; | are
given, on some level surface .7 in ¥, then, in the domain of dependence
of .#y, unique solution exists to the evolutionary system

o the fields |h;; and K,—_j that can be reconstructed from the freely

specifiable and constrained variables do satisfy the Hamiltonian and
momentum constraints

Istvdn Rdcz (University of Warsaw & Wigner RCP) Pl, & March 2019 10/23
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The parabolic-hyperbolic form of the constrains

Solving the constraints:

Q

) (hij, Kij) | represented by the variables (N Ni,.aij;f‘\';,k-i,Kl[,K-ij)

@ the constraints comprise a parabolic-hyperbolic system for ’(ﬁ,k;, K£¢)|
e with freely specifiable variables on |¥| and on |Sin.data |
{

| e T 0
(‘\ |1Pin.data ? N y Yigs K, k"*ﬂ.. data ? ¢ [Sin.data

Kij)

inidata v e

Istvdn Rdcz (University of Warsaw & Wigner RCP) Pl, 6 March 2019 11 /23

Pirsa: 19030100 Page 24/47



The parabolic-hyperbolic form of the constrains

Solving the constraints:

Q

) (hij, Kij) | represented by the variables (N Ni,.aij;f‘\';,k-i,Kl[,K-ij)

@ the constraints comprise a parabolic-hyperbolic system for ’(ﬁ,k;, K£¢)|

e with freely specifiable variables on |¥| and on |Sin.data |

1Pin.data in.data

(\ .Ni',a-ij;h‘,,k,f‘\-. ‘Il(l{j"\”lm.l_u_\‘Kij)

o afixed (+/—) sign of |K = 1734 .¥,7,; — D;N7|can be guaranteed

Istvdn Rdcz (University of Warsaw & Wigner RCP) Pl, 6 March 2019 11 /23

Pirsa: 19030100 Page 25/47



Kerr-Schild black holes and the superposed ones

The Kerr black hole:

In Kerr-Schild form:

GJap = Nagp = 2]’[((?{75‘

@ inertial coordinates (t,x,y, z) adapted to the Minkowski background 7,z

34,
= e
H = rdtfa<z¢

e —i ref+ay ry—axr z
ge a 'r2+a? ) ,r.2+(12 '

@ the Boyer-Lindquist radial coordinate r is related to the spatial part of the inertial

coordinates as

x 2 2

: 2 2 2 TN ) ) 22
7'4—(:{:‘+’y“+z‘—cz‘")"r'z—a“z‘"zo‘ ﬁ;—-l—;vz:l

Istvdn Rdacz (University of Warsaw & Wigner RCP) Pl, 6 March 2019
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Kerr-Schild black holes and the superposed ones

The Kerr black hole:

In Kerr-Schild form:

GJap = Nagp == 2H€(1£ﬁ

@ inertial coordinates (t,x,y, z) adapted to the Minkowski background 7,z

34,
= e
H = rdtfa<z¢

L. =11 rrraYy ry=ax z
“ (Y ’ 'r2+a? ) ,r.2+(12 '

@ the Boyer-Lindquist radial coordinate r is related to the spatial part of the inertial

coordinates as
2

2 2
x4 T
Tt & =1

. 2 2 2 2 ‘ 2] )
rt — (z° +y° + 2° —a”) r*—a’22=0 ‘

@ the r = const surfaces are “ellipsoids”
o degenerate to a disk 2° + 3 < a*® & z = 0 possessing the “ring singularity”

. ) ) 2 -
(given as z° + y* = a° & z = 0) at its edge
Pl, 6 March 2019

Istvdn Rdacz (University of Warsaw & Wigner RCP)
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Kerr-Schild black holes and the superposed ones

t = const slices in Kerr spacetime:

rity”

la

ring singulariry
ring singu,

I
|
1
]
U
[
1
¥
i
]
i

the @ = % section

Y ~ R®\ {“ring singularity” }

Istvdn Rdacz (University of Warsaw & Wigner RCP) , 6 March 2019 13 /23
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Kerr-Schild black holes and the superposed ones

Generic Kerr-Schild black holes:

@ the Kerr-Schild metrics are form-invariant under Lorentz transformations

o if a Lorentz transformation z'“ = A“4 " |is performed

e the metric retains its distinguished Kerr-Schild form

ghp = Nap + 2H'E, L,

o where H' = H'(z'“) and ¢ = {};(x'%) are given as

H' = (A ] il ), = A2 0 (A5 ] ale)

Istvdn Rdacz (University of Warsaw & Wigner RCP) Pl, 6 March 2019
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Kerr-Schild black holes and the superposed ones

Generic Kerr-Schild black holes:

@ the Kerr-Schild metrics are form-invariant under Lorentz transformations
o if a Lorentz transformation z'“ = A“4 " |is performed

e the metric retains its distinguished Kerr-Schild form

/ e ol pl
das = TNap s i n ]

o where H' = H'(z'“) and ¢ = {};(x'%) are given as

Ha’ — 5 ([Anﬁ]—lmlﬁ) : ,6 = Aaﬁ pn ([AE —1. M,;v)

@ boosts and spatial rotations are special Lorentz transformations — it is
straightforward to construct models of moving and rotating black holes with
preferably oriented speed and spin

Istvdn Rdacz (University of Warsaw & Wigner RCP) Pl, 6 March 2019 14 /23
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Kerr-Schild black holes and the superposed ones

Superposed Kerr-Schild black holes:

We are looking for suitable free(ly specifiable) data:
o

GapB = Nap == Qfl[l}gu[l]gﬂ[l] == QII[Z]F(\» [Q}Eﬁ 2] (*)

o H and ¢, correspond to the Kerr-Schild data for individual black holes

@ (*) does not satisfy Einstein's equations

@ good approximation close to the individual black holes

o Einstein tensor falls off at the rate O(|Z|~*), where |7| = /22 + y? + 22

Istvdn Rdcz (University of Warsaw & Wigner RCP) Pl, 6 March 2019 15 /23
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Kerr-Schild black holes and the superposed ones

Superposed Kerr-Schild black holes:

We are looking for suitable free(ly specifiable) data:
]

g(xﬁ — 77(_2;3 == ij[l}gu[l]gﬂ[l] == QFI[Q]FW [Q}Eﬁ [2] (*)

o H and ¢, correspond to the Kerr-Schild data for individual black holes

@ (*) does not satisfy Einstein's equations

@ good approximation close to the individual black holes

o Einstein tensor falls off at the rate O(|Z|~*), where |7| = /22 + y? + 22

Choice for the free data: Take a foliation of the tps;nr = 0 time-slice of (*)

Istvdn Rdcz (University of Warsaw & Wigner RCP) Pl, 6 March 2019 15 /23
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Solving the constraints as an initial-boundary value problem

The initial-boundary value problem:

the ., surfaces have tacitly been assumed to be compact without boundary:

@ in numerical approaches Y is chosen to be a large but bounded subset of R*

Istvdn Rdacz (University of Warsaw & Wigner RCP) Pl, 6 March 2019 16 /23
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Solving the constraints as an initial-boundary value problem

The initial-boundary value problem:

the ., surfaces have tacitly been assumed to be compact without boundary:

@ in numerical approaches ¥ is chosen to be a large but bounded subset of R?

e the product structure ¥ ~ R x .% can be guaranteed by choosing the .7,
leaves to be diffeomorphic to a closed disk in R?

choose ¥ to be a cubical region centered at the origin in R*:

Istvdn Rdacz (University of Warsaw & Wigner RCP) Pl, 6 March 2019 16 /23
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Solving the constraints as an initial-boundary value problem

The initial-boundary value problem:

the ./, surfaces have tacitly been assumed to be compact without boundary:

@ in numerical approaches Y is chosen to be a large but bounded subset of R*

e the product structure ¥ ~ R x .%" can be guaranteed by choosing the .¥,
leaves to be diffeomorphic to a closed disk in R?

choose ¥ to be a cubical region centered at the origin in R*:

for large enough value of A ...

@ boundary of %:

six squares each with edges of size 24

the black holes are assumed to be located
on the z = 0 plane

speeds are parallel, spins are orthogonal
to the z = 0 plane

@ foliation by z = const level surfaces

@ deduce K from (M)

Istvdn Racz (University of Warsaw & Wigner RCP) Pl, 6 March 2019 16 /23
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Solving the constraints as an initial-boundary v, l\ue problem

The critical coefficient A

(0, —A,0
(0, A, 0)

@ the sign of K decides whether the parabolic-hyperbolic system evolves in the
positive or negative p-direction

K[(8,N) - N{D,N)] = N*(D'D\N) + AN + BN3

e it propagates aligned p' for positive f{ while anti-aligned for negative K

Istvdn Rdacz (University of Warsaw & Wigner RCP) Pl, 6 March 2019 17./23
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Solving the constraints as an initial-boundary value problem

Splitting the boundary:

The princical coefficient f{

*
@ K can be given as the product of a strictly negative function and the z-coordinate

*
@ K is positive below the z = 0 plane, while it is negative above that plane

£ -0.075
B -0.025
% é __ . I -0.0075
K = const level surfaces: ‘-..! : . m-00045
® <0, 24 = 100 \ -0 < HO
M =1, £ = 20¢, \ B 0.075
L M 0.025
gl sapz., ol %06

A L 0.0075
M2 =2 dR = —108, B 0.0045

702 = -025&;, al?l = -0.8

Istvdn Rdacz (University of Warsaw & Wigner RCP)
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Solving the constraints as an initial-boundary value problem

Solving the initial-boundary value problem:
The parabolic-hyperbolic system:

* : * ==
@ K can begivenas | K = -z - K

*- - - - - -
@ K is positive below the z = 0 plane, while it
Is negative above that plane ' e

8

| 4
o

@ solved by propagating, along the .'/,,w_ : e
z-streamlines, initial values specified on the tak s '
horizontal z = + A squares

7 AL0,0)

(0,0, - Af

Istvdn Rdacz (University of Warsaw & Wigner RCP) Pl, 6 March 2019 19 /23
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Solving the constraints as an initial-boundary value problem

Solving the initial-boundary value problem:
The parabolic-hyperbolic system:

* . * =
K canbegivenas | K = -2 K

*- - - - - -
K is positive below the z = 0 plane, while it
Is negative above that plane ' bl

8 (=A;0.004
=TT o
o

solved by propagating, along the 8 /
0 sl i d‘lﬂ (1] 04,0 4
z-streamlines, initial values specified on the OOl iy 2

v N
horizontal z = + A squares %

boundary values are to be given on the four
vertical sides of the cube

(0,0, -Aff

° ﬁ_,Klg and k; are developed on ¥t and ¥~ separately

o global existence and matching of these solutions at their common
Cauchy horizon—at the z = 0 plane—is of fundamental importance

e the auxiliary metric (*) possesses a z — —z reflection symmetry

Istvdn Rdcz (University of Warsaw & Wigner RCP) Pl, 6 March 2019 19/23
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Solving the constraints as an initial-boundary value problem

Solving the initial-boundary value problem:
The parabolic-hyperbolic system:

* ; * -I;
K canbegivenas | K = -2 K

* - - - - -
K is positive below the z = 0 plane, while it wed|
Is negative above that plane e

8

solved by propagating, along the l/u,/_‘ﬁy

. T e s g i (07 A,0)] 1
z-streamlines, initial values specified on the : (..;im 5
horizontal z = 4 A squares s

boundary values are to be given on the four
vertical sides of the cube

(0,0, —aft

° ﬁQKQ and k; are developed on X1 and ¥~ separately

o global existence and matching of these solutions at their common
Cauchy horizon—at the z = 0 plane—is of fundamental importance

@ the auxiliary metric (*) possesses a z — —z reflection symmetry

@ assume the existence of unique (at least) C solutions (apart from
singularities): proper matching at the “common Cauchy horizon” follows

Istvdn Racz (University of Warsaw & Wigner RCP) Pl, & March 2019 19 /23
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Solving the constraints as an initial-boundary value problem

Exact Kerr: with input parameters M = 0.5,a = 0.3M,v = 0.6,d = 5M

Fzxzact Kerr

caonvergence

2_0 rales

-] 1

Istvdn Rdacz (University of Warsaw & Wigner RCP) Pl, 6 March 2019
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Solving the constraints as an initial-boundary value problem

A binary system: M; = 0.25,a, = 0.7,v; = 0.68, d;
oSyl ads = —0.9, 95 = v /-"l,([g —

convergence

1.36 rates

1.28

0 0 =5 0
X

i =a>=1

video: the evolution of N

Istvdn Rdcz (University of Warsaw & Wigner RCP) Pl, 6 March 2019
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Input parameters and ADM charges

Input parameters and global ADM charges:

@ Input parameters: the rest masses Ml displacements cf['”“], speeds U (]
and spins J\:f[""](ﬂ"’*]gén} of the involved black holes

e essentially the same as used in post-Newtonian description of binaries !!!

@ Global ADM charges: in terms of the input parameters

ADM

Aun-fj..f\m\-f: 7[111\_1[1](?[1] i ,}/[2]]\_1[2] d @
..ALJM: 7[1]]1_{[1]{5.[1] o 7,[2]‘;‘1[2]5'[2]

j.ALJM: 7[1] {Ju[l]c'i‘[ll>< ?-_;'[1] 4 ]\_][1]@[1] .%"'0[1]}

+ 412 { Mg G2 A_f[zla[zlgyl}

To—
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Input parameters and ADM charges

Input parameters and global ADM charges:

o Input parameters: the rest masses M!™, displacements cf["‘], speeds 7 "

and spins A-f[”](ﬂ'”']s’o[”} of the involved black holes

e essentially the same as used in post-Newtonian description of binaries !!!

@ Global ADM charges: in terms of the input parameters

o though (*) does not satisfy Einstein's equations it is asymptotically flat

e constructed by adding contributions of individual black hole metrics to a
Minkowski background

e the ADM quantities are linear in deviation from flat Euclidean space at infinity

M ADM': 7[1””[1] = 7[2]]\1[2]

ADM - ADM

d i ,},.[1]]\_1[1]([[1] + ,},['3]]\_1[2] (?[2]

— A DM

= A p G0l 4 2212
pADM ey {M[I]J[l]x g 4 M[”a.“].%’y]}

+ 412 { M2 g2y F2 M[zla[zlgyl}
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Summary

Summary:

@ a new method to initialize time evolution of binary black hole systems by
applying
o a parabolic-hyperbolic formulation of constraint equations
o superposing Kerr-Schild black holes

the parabolic-hyperbolic equations solved as an initial-boundary value problem
existence of unique (at least) C? solutions is guaranteed (apart from singularities)

construct initial data by integrating numerically the parabolic-hyperbolic form
of the constraints: !!! paper is coming out soon

the input parameters—the rest masses, speeds, spins and displacements—are
essentially the same as used in PN !!!

each of the ADM charges can be given in terms of the input parameters

no use of boundary conditions in the strong field regime (tidal deformations)
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Summary

Summary:

@ a new method to initialize time evolution of binary black hole systems by
applying
e a parabolic-hyperbolic formulation of constraint equations
o superposing Kerr-Schild black holes

the parabolic-hyperbolic equations solved as an initial-boundary value problem
existence of unique (at least) C? solutions is guaranteed (apart from singularities)

construct initial data by integrating numerically the parabolic-hyperbolic form
of the constraints: !!! paper is coming out soon

the input parameters—the rest masses, speeds, spins and displacements—are
essentially the same as used in PN !!!

each of the ADM charges can be given in terms of the input parameters
no use of boundary conditions in the strong field regime (tidal deformations)

next: time evolving (the playground is open !!!)
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