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Abstract: | will describe the relevant representation theory that allows to think of all components of fermions of & nbsp;a single generation of the
Standard Model as components of a single Weyl spinor of an orthogonal group whose complexification is SO(14,C). There are then& nbsp;only two
real forms that do not lead to fermion doubling. One of these real forms is the split signature orthogonal group SO(7,7). | will describe some
exceptional phenomena that occur for the orthogona groups in 14 dimensions, and then specifically for this real form. The real form SO(7,7)
suggests a link to generalised geometry, which | will describe. | will aso describe why spinors in general are redly differential forms in
disguise.&nbsp;
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Nature accurately described by the SM of particle physics

Finalised in mid 70’s, last ingredient - Higgs - observed in 2012

SM, extended with right-handed neutrinos to
accommodate neutrino masses, together with GR and
assumptions about the nature of inflation, dark matter
and dark energy explains the overwhelming majority of
observations we make about our Universe
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However, the SM is seemingly a mess devoid of any structure that
can give clues as to what is behind it. Low energy approximation
to some other, likely more symmetric theory, rather than a
fundamental theory.

Still, closer inspection reveals that “hidden” structure is there.
Needless to say, it is very important to have a clear understanding
of what this extra structure is, for one day it may lead to a
discovery of a more fundamental description
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Researchers were after “hidden” structure within the SM from the
times the model itself was discovered. Several GUT schemes have

been put forward

Two most famous GUT scenarios

SU(5) theory by Georgi and Glashow 1974

SU((2)xSU(2)xSU(4) theory by Pati and Salam 1974

Both are “unified” within the SO(10) GUT, which is the most
elegant proposal that describes all fermions of a single generation
of the SM as components of a single complex Weyl irrep 16¢
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The SO(10) theory is arguably the most convincing GUT scenario.
One can go down to the SM by a sequence of symmetry
breakings, carefully arranged not to conflict the experiment (proton
decay). The biggest question is what causes this and not that
pattern of symmetry breaking. Why SM? There is no convincing
explanation

Other attempts to “understand” the structure of the SM, notably
non-commutative geometry. Not subject of this talk

Still, it seems that the SO(10) pattern on the SM fermions holds
some important truth in it

Let me remind you the relevant representation theory, to set the
stage for the later developments
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Spinor Lagrangian

The structure of the SM is more transparent in the 2-component
spinor formalism

2-component spinors are of two types

_',
XA XA . .
Both are irreducible
representations of
Lorentz
unprimed primed "
(undotted) (dotted) Complex (Femiian)
. . conjugates of each other
spinor spinor
Weyl Lagrangian
A 9 AL s ta Real (Hermitian)
L=1i(x ) Oarxa =1 X' 0x modulo a surface term
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Fermions of the SM

Two-component

fermion felds SU(3) SU(2), Y 1y Q=1T;+Y
U, (riplet t'J x -;
Q, doublet }
o, triplet tl. —l, —%
at anti-triplet singlet ‘; 0 “;
dt anti-triplet singlet la 0 l;
I singlet —% 1 0
L; = doublet -
l singlet L L |
e singlet singlet | 0 |

All fields are 2-component spinors, transforming under SU(3) x SU(2) x U(1) as indicated

The generation indices i=1,2,3 Colour indices suppressed

Bar over a symbol is a part of the name, not to be confused with complex conjugation
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SM Lagrangian
We describe it in words instead of writing a long expression

Every of the 2-component spinors in the table will have its Weyl
kinetic term. Spinors are coupled to the SU(3) x SU(2) x U(1)
gauge fields, and the Higgs field, which is a complex valued SU(2)
doublet, of hypercharge Y=1/2. All terms of mass dimension four
that are compatible with the gauge and Lorentz symmetry are
written down, together with their Hermitian conjugates.

Plus there are kinetic terms for the gauge fields - usual FA2

Plus there is the kinetic plus potential term for the Higgs.
Potential is quartic and makes Higgs acquire a non-trivial VEV.

Right-handed sterile neutrinos r; can be added for free

If add Majorana mass terms for them, gets see-saw mechanism
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SO(10) structure of SM fermions

To see all fermions of a single generation inside a single
irreducible representation of SO(10) need to think of leptons as
the fourth colour of quarks

lepton
v o u

Then have SU(4) mixing the four colours of quarks

red green blue lepton
u u u u
d d d d
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Overall, we have fields transforming under Pati-Salam group
SU(2)r, x SU(2)r x SU(4)

in the following representations

o=(4) @10 o=(§) wza

One then notes SU(2) x SU(2)/Zy = SO(4)
SU(4)/ZQ = SO(G) Cartan’s isomorphisms

And 30(4) x SO(6) c SO(10)
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We also have the following representation theory fact:

A Weyl spinor representation of SO(2n), when restricted to

SO(2k) x SO(2(n-k)) embedded into SO(2n) in the standard way,
will split as a Weyl spinor of both SO(2k) and SO(2(n-k)), plus another
Weyl spinor of both SO(2k) and SO(2(n-k)), of opposite chiralities

This shows that all spinors of a single generation of SM arise as

components of a single Weyl spinor of SO(10), with Pati-Salam
group embedded into SO(10) in the standard way

SU(2), x SU(2)r x SU(4) ~ SO(4) x SO(6) C SO(10)

2-component spinors of single generation are components of
16¢ irreducible Weyl representation of SO(10)
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Back to the main story:

In the description of SO(10) GUT Lorentz spinor indices played no
role. The GUT fermion is an object

y .
! aA plus complex conjugate

/ S0O(1,3) 2-component

SO(10) spinor index spinor index

a=1,....16 A=1,2

Overall, single generation of fermions is described by 16 x 2
complex functions or

64 real valued functions
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Can “unify” the Lorentz and GUT spinor indices by repeating
SO(2k) x SO(2(n — k)) C SO(2n)

Should put the Lorentz SO(1,3) and GUT SO(10) groups together

Some real form of
SO(4, (C) X SO(lO,C) C SO(M,CC)

Weyl spinor of SO(14,C) is 64 dimensional (complex), and splits
20 ® 16¢ + 2¢ ® 16¢

into a sum of two Weyl representations of opposite chiralities

This is as we want, should just select an appropriate real form
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SO(14, C) real form

Standard representation theory of Clifford algebras shows
that there are only two real forms that give a real 64-
dimensional Weyl representation
Have  SO(s,7) s+r =14
To have Weyl representation beingrealneed s —r =0 mod 8
The two possibilities are
SO(7,7 s—1r=>0
SO(11, 3) s—1r=3~8

Both contain Lorentz SO(1,3) and Pati-Salam groups as subgroups

SO(1,3) x SO(6,4)  SO(7,7)

This talk is an advertisement

SO(L 3) X 80(1[)) C 80(11’3) of the first option
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So, both SO(7,7) and SO(11,3) contain Lorentz group, and
the Pati-Salam GUT gauge group inside the subgroup that
commutes with Lorentz

Representation theory works out correctly, fermions with
correct quantum numbers get produced

Moreover, will get also the kinetic terms for all the fermions
by dimensional reduction

/ TP v
R1«1

The dimensional reduction of the 14D Weyl Lagrangian to 4D
will produce all the correct fermion kinetic terms

(this exercise is carried out in my paper)
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Everything we described is representation theory of the type
very familiar to people. Precisely these ideas were considered
by people in the past, but they never became popular. Why?

Percacci SO(11,3) scheme

Can easily couple fermions to Chamseddine-Mukhanov SO(13,1)
gauge fields scheme, but then fermion doubling

SO(11,3) or SO(7,7)
1 connection

/ Uy (0 + <[y " Jwr )W
JR14 2

What kind of kinetic terms can we write for these fields? If
write YM will get negative sign terms for some components.
But also should not write YM because spin (Lorentz)
gravitational connection is involved

The difficulty here is that of unifying gravity with other interactions!

But SM fermions suggest that this unification takes place!
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The biggest puzzle of this scheme is what breaks the SO(14)
symmetry down to Lorentz plus SM gauge group

Thus, to make any progress on any idea of this sort, and to
convert it into a theory, one has to solve a very hard problem
of what makes gravity a special force

Thus, in spite of representation theory working out beautifully,
it seems that much more than representation theory is needed
to make the next step

The talk could end here. But | will add few more remarks of
representation theoretic nature that show that SO(14) is very
special. It may be that the clues for the next step can be
found this way
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Representation theory Fact #1

Consider the action of SO(2n) on its Weyl spinor representation

), ‘ '2, P
diIIl(SO(?’H)) = 271( g 1) Dimension of the group

diIIl( ‘f')l’";;g”) — on—1 Dimension of the Weyl representation

The dimension of the spinor representation grows with n much
faster than dimension of the group

While for small n we have
The last n when

dim(SO(2n)) > dim(Ws,,) this is true is n=7
| giving SO(14)

This will not be true for sufficiently large n
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Indeed, for n=7 For n=8

p - v .
dim(SO(14)) =91 dim(SO(16)) = 120
i dim(Wi,) = 64 j dim(Wyg) = 128
Last dimension when
dim(SO(2n)) > dim(Ws,) Why is this interesting?

When dimension of the group is bigger than dimension of the
space it acts on, generically, there is a non-trivial subgroup
stabilising a point - symmetry breaking

Again generically, this stabiliser subgroup will define some
geometric structure. All this is very interesting for SO(7,7)!
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Representation theory Fact #2

The dimension of the generic orbit for SO(7,7) acting in its Weyl
representation is 63 - the “scale” of the spinor can not be changed

dim(SO(7,7)) — dim(orbit) = 91 — 63 = 28

This suggests that the stabiliser is related to G2  dim(Gy) = 14

(could also be SO(8) but this is not what happens)

There are three possible generic orbits, with stabilisers being

Go X Gy Compact real form
Cases 1,1’ , p

19 X Uy Split real form
Case 2 Gg‘
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Representation theory Fact #3

With the stabilisers related to G2 C SO(7)

7

Generic Weyl spinor of SO(7,7) defines the second metric in R”

The way this arises is that the stabiliser subgroup is one
consisting of matrices that commute with [ € End(R"")

| preserves the split signature metric

2 2 __ _ _
I? =1, [“- = -1 G(I-,I)=G(,")
/ R —g b g
Cases 1,1’ Case 2 I'= g—"bg~'b by~

= =
{

Lowering the index of | with the metric in R’
we get the second metric (in seven dimensions) plus 2-form

Setup familiar from generalised geometry with its two metrics
- one kinematical, one dynamical
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Representation theory summary

Generic fermion of the Standard Model defines a
metric In seven dimensions

Extremely rare phenomenon when a spinor defines a metric
And breaks symmetry in a non-trivial pattern as well

Speculation: is gravity about dynamics of this spinor defined metric?

| do not know if this mathematics is related to reality, but there
are highly exceptional geometrical phenomena happening in
7+7 D, with the SM fermions pointing at them as relevant

|s something important hidden here?
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More representation theory: Weyl Lagrangian in 14D

Spinors of SO(n,n) admit a beautiful explicit description in
terms of differential forms

Clifford algebra in n+n dimensions can be realised by
operators acting on differential forms in n dimensions

(a1 := da i =19 /0y
They satisfy the following anti-commutation relations
(a)'a; +aj(a’)t =&
All others anti-commute This gives a realisation of Cliff(n,n)

Weyl representations are those in fixed parity
(even or odd) differential forms
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Example of SO(2,2)
(e, (aH)T, a1, as

SO(2,2) Lie algebra is realised by all quadratic operators
Get two commuting copies of SL(2) Lie algebra

f

H = (_'1,1_(_1._]; - (_12(1;. Ey = ajay, JO— (7.2(7{.

[E.,E_|=H, [H Ei==+2E,.

H = (1,.|a.J{ + (1,3(1-.;2 — 1 =a (J,J{ — (1,.3(1,.3, Ei = ajas, EF_= (JLU,J[.
\EFy,E_|=H, |H,Ey] = +£2F,.
The action on odd forms
Hdz? = '(1.|(1,T — (L;g('li)(l;l'z = dz?, Hdx' = ('ua.'r — (1.3(1@5)(1;1?1 = —dzx’,
1 2, I 2,
FE_odz® = u.-gaf‘i dr® = —dx', E, dr' = (’1.|('1..£('l;1." —dz?,

Pirsa: 19020035
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The action on even forms

Hl= ((I-|H.J{ — (I.-L('!.z) 1 =1, Hdax'da? = ((1.1(1,]; - f’l.:i;f't.;g):'l:t‘l(1:172 = —da'da?,

= /

EF_1= (.L.Ef}T | = —da'da?, F,o dr'dx? = ajasdr'dr® = —1.

Overall, get SO(2,2) = SL(2) x SL(2)

Weyl spinors transforming non-trivially with respect to the
first SL(2) are odd forms, and non-trivially with respect to the
second SL(2) are even forms

( ;; ) = —a + fBdz'da’ ( Z; ) = —adxr* + Bdx’.

Two types of 2-component spinors of SO(2,2)
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Dirac operator

To describe Dirac operator in R™"
will describe spinors as differential forms in R"
with coefficient functions depending on both z*, &;

The Dirac operator is

a0 N,
D = c(dx") ﬁd’ + c(dx;) 97 Y

where c is Clifford multiplication

Explicitly c(dx') = da' = (a")T

((d}'z) - Id JOxi — U

Dirac operator as a version of the exterior derivative operator
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Dirac operator in R**?

ds® = da'dr, + dxidis Off-diagonal form of the metric

; 1,2 ~1,2 e [,2 ~1,2
€T =uT uT, Tieo=u'"~" —u

3=

ds? = (du')? + (du?)* = (di)? = (i)’

Diagonal form of the metric

; . Yl ~ -~ ‘ ~ -
Two chiral Dirac operators S Sy, 0:5; 285

9.4 = o = ( A — ajoa?  —d/out + 0/ou ) _g ( A/ory,  —0/0i, )

—d/ou' —ajou' —0)ou® — 0jou* ~a/dx" —8jdx*

© /ot + 0Joat —0/ou' + 0/ou ) C oot —0/0T,
“\ —0/0r, —0/0,

a/out — o/ Ajou* + d/ou* (
] T QN a1 , ) s ok
More compact notation J° = z( _0, -0, ) . 0= a’( _o

o @) =9 (_:_(} L?f)) P L W ()‘ QO 9 ‘,fJ‘.
3 o — 943 I} —Oya — dy3

vt =0
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Dirac operator in R**?
ds® = da'di, + dx*dis Off-diagonal form of the metric
z? = ol + @b, T = ub? — gh?

ds* = (du')? + (du*)* — (du')? — (du?)?

Diagonal form of the metric
: H '.rlr e ! 9. O Y
Two chiral Dirac operators S =Sy, 0:5; 285
5 A _ T _ L Ofout —ofout —dfout +ojout \ _ ( 0)/dF, —0/di, )
A =L —d/out —a/oa'  —0/ou* — a/ou’ "\ —9/0z" —9/02*
o d/ox*  —0/01,
- d/ 0 /0y

9.4 =9 ( djou* + /0w —0/ou' + a/ou )
l-’ = —_

. T S -1 , ) Oy !
More compact notation 0" =2 ( ) . U=2 ( - )

d/ou' = d/oa'  —d/ou* + dJou*
_()| —()} ) 7(')| *(!_).:

(8% | ({)-)(Y - L}I 3 - ¥ : ("‘—)‘B Y (—)I f?
) . — 2 - '“f) {.)I = — 2 "
‘ ( 4 ) ( Dy — 92f ) ( ( 3 ) ( —d1a — D3
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The action on even forms

Hl= ((I-|H.J{ — (I.-L('!.z) 1 =1, Hdax'da? = ((1.1(1,]; - f’l.:i;f't.;g):'l:t‘l(1:172 = —da'da?,

= /

EF_1= (.L.Ef}T | = —da'da?, F,o dr'dx? = ajasdr'dr® = —1.

Overall, get SO(2,2) = SL(2) x SL(2)

Weyl spinors transforming non-trivially with respect to the
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( ;; ) = —a + fBdz'da’ ( Z; ) = —adxr* + Bdx’.

Two types of 2-component spinors of SO(2,2)
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Weyl Lagrangian in R"™"

Weyl Lagrangian exists only for SO(n,n) with n odd
SO(n,n) invariant inner product

(\111? \112) — U(\Ill)\I]2

"\

canonical involution restriction to top form

VM X...QU >V K... R0

S[W] :/ (U, DW)
JR,M

Vanishes by integration by parts for n=1 mod 4
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Summary
SM fermions point in the direction of a real form of SO(14,C)

SO(14,C) is the largest orthogonal group that acts densely in
its irreducible Weyl representation (of “unit” spinors)

A generic SM fermion breaks SO(14,C) to the subgroup G2xG2,
and the stabiliser defines a metric in seven dimensions. The
fact that a spinor defines a metric is exceptional

Of the two possible real forms SO(7,7) is much more beautiful

Spinors of SO(7,7) are differential forms in 7D. Dirac operator
is a version of the exterior derivative operator. Non-trivial Weyl
Lagrangian exists only for SO(3,3) and SO(7,7). Dimensional
reduction to 3+1 gives the SM fermion kinetic terms.
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Weyl Lagrangian exists for SO(3,3)

Dimensional reduction to 3+1 gives

SO(3,1) x SO(2) € SO(3,3)

single electrically charged Weyl fermion in 3+1

The next non-trivial case is for SO(7,7)

Dimensional reduction to 3+1 gives
SO(3,1) x SO(4) x SO(6) C SO(7,7)
the fermion content is that of the Pati-Salam version of the SM

Split signature pseudo-orthogonal groups allow for a very
nice explicit description of spinors and the Dirac operator
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Outlook
Non-zero SM fermion field defines a metric in seven dimensions

Could it be that gravity is an effective field theory
describing fluctuations of this metric? This would answer
the question of why metric is non-zero, and also why
gravity is a special force

Question that can guide further developments:

S[lIl] _ / (‘I’, qu) i I.f'r(l'[f) I = Order 8 invariant
R7.7 '

Is there a solution of this fReory that “spontaneously
compactifies” to 4D and bregks the symmetry to the SM
gauge group?

Such Lagrangian only exists in 747 dimensions!
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