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Abstract: <p>The precise relationship between post-selected classical and& nbsp;<br />
post-selected quantum computation is an open problem in complexity& nbsp;<br />
theory. Post-selection has proven to be a useful tool in uncovering some& nbsp;<br />
of the differences between quantum and classical theories, in& nbsp;<br />

foundations and elsewhere. Thisis no lesstrue in the area of & nbsp;<br />
computational complexity -- quantum computations augmented with& nbsp;<br />
post-selection are thought to be vastly more powerful than their& nbsp;<br />

classical counterparts. However, the precise reasons why this might be& nbsp;<br />
the case are not well understood, and no rigorous separations between& nbsp;<br />

the two have been found. In thistalk, | will consider the difference in& nbsp;<br />
computational power of classical and quantum post-selection in the& nbsp;<br />
computational query complexity setting.<br />

<br />

We define post-selected classical query algorithms, and relate them to& nbsp;<br />
rational approximations of Boolean functions; in particular, by showing& nbsp;<br />
that the post-selected classical query complexity of a Boolean function& nbsp;<br />
isequal to the minimal degree of arational function with nonnegative& nbsp;<br />
coefficients that approximates it (up to afactor of two). For& nbsp;<br />

post-sel ected quantum query algorithms, a similar relationship was shown& nbsp;<br />
by Mahadev and de Wolf, where the rational approximations are allowed to& nbsp;<br />
have negative coefficients. Using our characterisation, we find an& nbsp;<br />
exponentially large separation between post-selected classical query& nbsp;<br />
complexity and post-selected quantum query complexity, by proving a& nbsp;<br />
lower bound on the degree of rational approximations to the Majority& nbsp;<br />
function.</p>
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Post-selection

The (hypothetical) ability to choose the outcome of a
random event
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on being right.
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The (hypothetical) ability to choose the outcome of a
random event
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Post-selection

The (hypothetical) ability to choose the outcome of a
random event
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The ability to discard computational paths where some
event doesn’t occur

[(mo VI Va)A(zgVa) Az Vay) = 17

1. Choose I at random

Tro=
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2.Choose &1 at random
.'"l'f] —

3. Choose T2 at
random
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The ability to discard computational paths where some
event doesn’t occur
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1. Choose ¢ at random /\

o= 0 x 1  becomes trivial

2.Choose ' at randon/\ /\
3. Choose T2 at
random
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. What other problems become easy?

e What happens if we have a quantum computer with
post-selection?

| PostBPP:

- Given two randomised (poly-time) algorithms A and B

{

if v € L, Pr[A(z) =1|B(x) =1] > 2/3
if v ¢ L, Pr{A(z) =1|B(x) =1] <1/3
Pr(B(z) =1] >0

.

PostBQP:
Given two quantum (poly-time) algorithms A and B

|

!
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Motivation

- We only know how to prove polynomial separations

between quantum and classical computation
- exponential separations are either conjectured, or for partial
functions.

Post-selection exaggerates this difference: we can
prove exponential separations (this talk).

- Studying the computational power of extensions to
quantum mechanics can help to explain why quantum
mechanics is the way it is

e.g..
non-unitary evolution, measurement probability |a|”
for p # 2 both allow simulation of post-selection
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PostBPP, PostBQP and the Polynomial Hierarchy
(PH)

(_. —C }
3rd level [Han et al., 1997]

of PH
[ [Aaronson, 2005]

NP —— PostBPP ——PostBQP = PP

[Toda, 1991]

PH . PPP= PPOS'[BQP

If PostBPP = PostBQP, then the PH collapses to the
third level.
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Quantum Computational
Supremacy

Roughly...
1. If BPP = BQP, then PostBPP = PostBQP

2. Adding post-selection to non-universal quantum

computational models makes them universal, e.g.

1. One clean qubit, Boson sampling, IQP circuits

. If these models can be simulated efficiently
classically, then PostBPP = PostBQP

. And the PH collapses
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Query Complexity

* Only count the number of queries we need to make to
the input, not the total computation time.

* Why study it? We can actually prove things!

« We can prove separations between the power of guantum and
classical computation in the query model

* e.g. unstructured search gives a quadratic
separation

©(N) classical queries

©(v'N) quantum queries
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Post-selected classical
guery complexity

* PostR : Query analogue of PostBPP

* E.g. post-selected query algorithm to compute OR(x)

1. Choose a random index i € {0,..., N — 1}.
2. It X; = 1, return 1.

1
3. Else, with probability oN return O PostR(OR) =1

4. Otherwise, return ‘don’t know’.

5. Post-select on not seeing ‘don’t know’
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Polynomial Approximation

* An N-variate multilinear polynomial P : {0,1}" — R

f- é ;S-t

P(a)= ) as|[[w
SC[N]

* A polynomial P e-approximates a function [ if

P(x) — f(x)] < e

* The degree of a polynomial is the size of its largest

monomial
deg (P) = max{|S|: ag # 0}
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* The acceptance probability of a T-query quantum

query algorithm can be written as a degree-2T
polynomial.

state after T" queries)

2€{0,1}n V\
Polynomial of degree T

* Lower bounds on the degrees of polynomials imply

lower bounds on quantum query complexity:

2degy (f) <Q(f)

* The “polynomial method” has been used to show many
quantum lower bounds

» e.qg. Parity, OR, AND, Majority, Collision problem, etc.
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Rational Polynomials and
Post-selection

* A rational polynomial (or rational function) is the
ratio of two polynomials:
P(r Approximation: |R(x) — f(x)] < ¢

Q(:[:) Degree: deg(R) = max{deg(/’),deg(Q)}
rdeg(f)

» Post-selected quantum query complexity PostQ is

characterised by the degree of rational functions:
[Mahadev & de Wolf, 2015]

lrdeg( (f) < PostQ.(f) < rdeg,(f)
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Results

» Non-negative rational degree rdeg, : the polynomials
can only have positive coefficients, and are over the
variables x1,x2,...,xn, (1 — 1), (1 —x2),..., (1 —xn)

» Post-selected classical query complexity PostR is
characterised by non-negative rational degree

pa——

| rdeg, (f) < PostR.(f) < 2rdeg. (/)

k!

Sl L i g

* Zero-error variant is equivalent to non-deterministic

query algorithms:
POStR[)(_f) — N(f)
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* Why rational functions?

* Bayes Theorem: Pr[A|B] =

Quantum: [Mahadev & de Wolf, 2015]

(f) < PostQ.(f) < rdeg (f) |
*——— Can be negative

Coefficients correspond to amplitudes |

Classical: [CC, 2018]

Must be positive

rdeg (f) < PostR,( )rdegW7

Coefficients correspond to probabilities”

Difference between Quantum and Classical? Probabilities vs. Amplitudes
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Separations

 Using the OR function. PostR(OR) =1

Quantum Q(OR) = ©(VN)

Exact post-selectea
classical

PostRy (()B) =N

Quantum Certificate (query
analogue of QMA)

QC(OR) = O(VN)

* Degree-1 rational polynomial for approximating OR
~ N
YT
€+ Zf\il X

Por(x) =
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PostR vs. PostQ

* Majority function on N bits:
MAJy () = {

1 if || > N/2
0 if |2| < N/2

[ 1

There is no /ow—degree' rational approximation to the
Majority function that has nonnegative coefficients.
rdeg” (MAJN) = Q(N)

lrdeg+ (f) < PostR(f)

‘There is no efficient post—se/ected classical query
algorithm for computing Majority.
PostR(MAJy ) = QA(N)

[PostQ(MAJ ) = O(log N)
!-PostO_ < PostR

—~
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Post-selection amplifies differences between quantum and classical

‘-'\1

-
Without post-selection (total functions)

Classical

Quantum < . > (randomised)
Q Polynomially related R

| .

Largest known separation: R(f) = Q(Q(f) ""

) [Aaronson et al., 2016]

|
- With post-selection

Quantum Classical

< >

PostQ Not polynomially related PostR

(f) = Q(2PestRU))  [cC, 2018)

08

Largest known separation: PostR

e

£
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—Xxtras

* The Majority lower bound can be generalised to all
symmetric Boolean functions. Analogous to a result
of Paturi.

* All lower bounds carry over to the communication

complexity setting (via the ‘simulation theorem’ of
GooOs et al.)

Pirsa: 19010075 Page 23/24



Summary

* When we add post-selection, we can nicely characterise
classical query complexity

* Allows us to directly compare the quantum and classical
cases:

» Exponential separation for the Majority function

» Difference lies in the use of amplitudes over
probabilities

* Post-selection exaggerates the differences between
quantum and classical computing
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