Title: Chris Cade: Post-selected classical query complexity
Date: Jan 23, 2019 04:00 PM
URL: http://pirsa.org/19010075
Abstract: <p>The precise relationship between post-selected classical and\
 post-selected quantum computation is an open problem in complexity\
 theory. Post-selection has proven to be a useful tool in uncovering some\
 of the differences between quantum and classical theories, in\
 foundations and elsewhere. This is no less true in the area of\
 computational complexity -- quantum computations augmented with\
 post-selection are thought to be vastly more powerful than their\
 classical counterparts. However, the precise reasons why this might be\
 the case are not well understood, and no rigorous separations between\
 the two have been found. In this talk, I will consider the difference in\
 computational power of classical and quantum post-selection in the\
 computational query complexity setting.

We define post-selected classical query algorithms, and relate them to\
 rational approximations of Boolean functions; in particular, by showing\
 that the post-selected classical query complexity of a Boolean function\
 is equal to the minimal degree of a rational function with nonnegative\
 coefficients that approximates it (up to a factor of two). For\
 post-selected quantum query algorithms, a similar relationship was shown\
 by Mahadev and de Wolf, where the rational approximations are allowed to\
 have negative coefficients. Using our characterisation, we find an\
 exponentially large separation between post-selected classical query\
 complexity and post-selected quantum query complexity, by proving a\
 lower bound on the degree of rational approximations to the Majority\
 function. $</ \mathrm{p}$ >

Post-selected classical query complexity

Chris Cade

University of Bristol, UK
arXiv: 1804.10010

EPSRC

(2) BRISTOL

Post-selection

The (hypothetical) ability to choose the outcome of a random event

Post-selection

The (hypothetical) ability to choose the outcome of a random event

Post-selection

The (hypothetical) ability to choose the outcome of a random event

The ability to discard computational paths where some event doesn't occur

$$
\left(x_{0} \vee x_{1} \vee x_{2}\right) \wedge\left(x_{0} \vee x_{2}\right) \wedge\left(x_{1} \vee x_{2}\right)=1 ?
$$

1. Choose x_{0} at random
2. Choose x_{1} at random
3. Choose x_{2} at
random

The ability to discard computational paths where some event doesn't occur

-
What other problems become easy?

- What happens if we have a quantum computer with post-selection?

PostBPP:

Given two randomised (poly-time) algorithms A and B

$$
\begin{array}{ll}
\text { if } x \in L, & \operatorname{Pr}[A(x)=1 \mid B(x)=1] \geq 2 / 3 \\
\text { if } x \notin L, & \operatorname{Pr}[A(x)=1 \mid B(x)=1] \leq 1 / 3 \\
\operatorname{Pr}[B(x)=1]>0
\end{array}
$$

PostBQP:

Given two quantum (poly-time) algorithms A and B

Motivation

- We only know how to prove polynomial separations between quantum and classical computation
- exponential separations are either conjectured, or for partial functions.
- Post-selection exaggerates this difference: we can prove exponential separations (this talk).
- Studying the computational power of extensions to quantum mechanics can help to explain why quantum mechanics is the way it is
- e.g.:
- non-unitary evolution, measurement probability $|\alpha|^{p}$ for $p \neq 2$ both allow simulation of post-selection

$$
\begin{gathered}
\text { NP: } \exists x \text { sit } f(x)=1 ? \\
\text { coNP: } \forall x \text { does } f(x)=1 ? \\
\text { 2nd PH: Jor s.t } \forall y, \quad f(x, y)=1 ? \\
\forall x, \exists y \text { s.e. } f(x y)=1 ? \\
\text { ? } \\
\exists x, \forall_{y}, \exists x
\end{gathered}
$$

PostBPP, PostBQP and the Polynomial Hierarchy (PH)

$$
\longrightarrow=\subseteq
$$

$3 r d$ level of PH

$$
\mathrm{NP} \longrightarrow \text { PostBPP } \longrightarrow \text { PostBQP }=\mathrm{PP}
$$

[Toda, 1991]

$$
P H \xrightarrow{\triangle P P}=P^{P o s t B Q P}
$$

If PostBPP $=$ PostBQP, then the PH collapses to the third level.

Quantum Computational Supremacy

Roughly...

1. If $\mathbf{B P P}=\mathbf{B Q P}$, then PostBPP $=$ PostBQP
2. Adding post-selection to non-universal quantum computational models makes them universal, e.g.
3. One clean qubit, Boson sampling, IQP circuits
4. If these models can be simulated efficiently classically, then PostBPP = PostBQP
5. And the $\mathbf{P H}$ collapses

Query Complexity

- Only count the number of queries we need to make to the input, not the total computation time.
- Why study it? We can actually prove things!
- We can prove separations between the power of quantum and classical computation in the query model
- e.g. unstructured search gives a quadratic separation

$$
\begin{aligned}
& \Theta(N) \quad \text { classical queries } \\
& \Theta(\sqrt{N}) \text { quantum queries }
\end{aligned}
$$

Post-selected classical query complexity

- PostR : Query analogue of PostBPP
- E.g. post-selected query algorithm to compute $\operatorname{OR}(x)$

1. Choose a random index $i \in\{0, \ldots, N-1\}$.
2. If $x_{i}=1$, return 1 .
3. Else, with probability $\frac{1}{2 N}$ return $0 . \quad \operatorname{PostR}(O R)=1$
4. Otherwise, return 'don't know'.
5. Post-select on not seeing 'don't know'

Polynomial Approximation

- An \boldsymbol{N}-variate multilinear polynomial $P:\{0,1\}^{N} \rightarrow \mathbb{R}$

$$
P(x)=\sum_{S \subseteq[N]} \alpha_{S} \prod_{i \in S} x_{i}
$$

- A polynomial $P \epsilon$-approximates a function f if

$$
|P(x)-f(x)| \leq \epsilon
$$

- The degree of a polynomial is the size of its largest monomial

$$
\operatorname{deg}(P)=\max \left\{|S|: \alpha_{S} \neq 0\right\}
$$

- The acceptance probability of a \boldsymbol{T}-query quantum query algorithm can be written as a degree-2T polynomial.

$$
\begin{array}{|l}
\mid \text { state after } T \text { queries }\rangle= \\
z \in\{0,\}^{n} \\
\text { Polynomial of degree } \mathrm{T}
\end{array}
$$

- Lower bounds on the degrees of polynomials imply lower bounds on quantum query complexity:

$$
2 \operatorname{deg}_{\frac{1}{3}}(f) \leq \mathrm{Q}(f)
$$

- The "polynomial method" has been used to show many quantum lower bounds
- e.g. Parity, OR, AND, Majority, Collision problem, etc.

Rational Polynomials and Post-selection

- A rational polynomial (or rational function) is the ratio of two polynomials:

$$
R(x)=\frac{P(x)}{Q(x)} \quad \text { Approximation: }|R(x)-f(x)| \leq \epsilon
$$

- Post-selected quantum query complexity PostQ is characterised by the degree of rational functions: [Mahadev \& de Wolf, 2015]

$$
\frac{1}{2} \operatorname{rdeg}_{\epsilon}(f) \leq \operatorname{PostQ}_{\epsilon}(f) \leq \operatorname{rdeg}_{\epsilon}(f)
$$

Results

- Non-negative rational degree rdeg $_{\epsilon}^{+}$: the polynomials can only have positive coefficients, and are over the variables $x_{1}, x_{2}, \ldots, x_{N},\left(1-x_{1}\right),\left(1-x_{2}\right), \ldots,\left(1-x_{N}\right)$
- Post-selected classical query complexity PostR is characterised by non-negative rational degree

$$
\operatorname{rdeg}_{\epsilon}^{+}(f) \leq \operatorname{PostR}_{\epsilon}(f) \leq 2 \operatorname{rdeg}_{\epsilon}^{+}(f)
$$

- Zero-error variant is equivalent to non-deterministic query algorithms:

$$
\operatorname{PostR}_{0}(f)=N(f)=C(f)
$$

- Why rational functions?
- Bayes Theorem: $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[B \mid A] \operatorname{Pr}[A]}{\operatorname{Pr}[B]}=\frac{\operatorname{Pr}[A]}{\operatorname{Pr}[B]}$

Quantum:
[Mahadev \& de Wolf, 2015]

$$
\frac{1}{2} \operatorname{rdeg}_{\epsilon}(f) \leq \operatorname{PostQ}_{\epsilon}(f) \leq \operatorname{rdeg}_{\epsilon}(f)
$$

Can be negative
Coefficients correspond to amplitudes
Classical:
[CC, 2018]
$\operatorname{rdeg}_{\epsilon}^{+}(f) \leq \operatorname{PostR}_{\epsilon}(f) \leq 2 \operatorname{rdeg}_{\epsilon}^{+}(f)$
Coefficients correspond to probabilities

Difference between Quantum and Classical? Probabilities vs. Amplitudes

Separations

- Using the OR function. PostR $(O R)=1$

Quantum	$\mathrm{Q}(O R)=\Theta(\sqrt{N})$
Exact post-selected Classical	$\operatorname{PostR}_{0}(O R)=N$
Quantum Certificate (query analogue of QMA)	$\mathrm{QC}(O R)=\Theta(\sqrt{N})$

- Degree-1 rational polynomial for approximating OR

$$
P_{O R}(x)=\frac{\sum_{i=1}^{N} x_{i}}{\epsilon+\sum_{i=1}^{N} x_{i}}
$$

PostR vs. PostQ

- Majority function on N bits:

$$
\operatorname{MAJ}_{N}(x)= \begin{cases}1 & \text { if }|x|>N / 2 \\ 0 & \text { if }|x| \leq N / 2\end{cases}
$$

There is no low-degree rational approximation to the Majority function that has nonnegative coefficients.

$$
\operatorname{rdeg}^{+}\left(\mathrm{MAJ}_{N}\right)=\Omega(N)
$$

$$
\operatorname{rdeg}^{+}(f) \leq \operatorname{PostR}(f)
$$

There is no efficient post-selected classical query algorithm for computing Majority.

$$
\operatorname{PostR}\left(\mathrm{MAJ}_{N}\right)=\Omega(N)
$$

$$
\operatorname{PostQ}\left(\mathrm{MAJ}_{N}\right)=O(\log N)
$$

PostQ < PostR

Post-selection amplifies differences between quantum and classical
Without post-selection (total functions)
Classical
$\underset{\mathrm{Q}}{\text { Quantum }} \longleftrightarrow$ Polynomially related $\longleftrightarrow \underset{\mathrm{R}}{ }$ (randomised)

Largest known separation: $\mathrm{R}(f)=\tilde{\Omega}\left(\mathrm{Q}(f)^{2.5}\right)$ [Aaronson et al., 2016]

With post-selection

Quantum
PostQ

Classical
PostR

Largest known separation: PostR $(f)=\Omega\left(2^{\operatorname{PostQ}(f)}\right) \quad[\mathrm{CC}, 2018]$

Extras

- The Majority lower bound can be generalised to all symmetric Boolean functions. Analogous to a result of Paturi.
- All lower bounds carry over to the communication complexity setting (via the 'simulation theorem' of Göös et al.)

Summary

- When we add post-selection, we can nicely characterise classical query complexity
- Allows us to directly compare the quantum and classical cases:
- Exponential separation for the Majority function
- Difference lies in the use of amplitudes over probabilities
- Post-selection exaggerates the differences between quantum and classical computing

