Title: PSI 2018/2019 - Foundations of Quantum Mechanics - Lecture 12
Date: Jan 22, 2019 10:15 AM

URL: http://pirsa.org/19010028

Abstract:

Pirsa: 19010028 Page 1/53



irsa: 19010028

Quantum Foundations
Lecture 12

PSI Review Class: 22" January 2019
Instructor: Matthew Leifer

leifer@chapman.edu
Pl Office: 353

Page 2/53



9) The Classical Limit of Quantum
Theory

Requirements for the Classical Limit
Wigner-Moyal Formalism
Spreading of Wavepackets

Coherent States
Environmentally Induced Decoherence

irsa: 19010028 Page 3/53



9.1) Requirements of the Classical Limit

Disappearance of typical Quantum Phenomena
Actualization of Measurement Outcomes

Recovery of the Equations of Classical Mechanics
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Disappearance of Quantum Phenomena

In the classical limit, we expect that typical guantum phenomena
should disappear or become effectively unobservable, e.g.

Quantum interference (except for electromagnetic fields)
Incompatibility of observables
Contextuality, nonlocality, etc.

Taken together, this says that our experiment should be

describable by classical probability theory instead of the rules of
quantum theory.

This can be understood independently of interpretation.
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Actualization of Measurement Outcomes

If we solve the first question then we will have a description of
our system in terms of classical probabilities.

How do we know that those probabilities can be interpreted in
terms of classical uncertainty?

e.g. even if we specify Prob(cat alive) = Prob(cat dead) = % and it is

not practical to perform an interference experiment, how do we know
that this describes a situation in which EITHER the cat is dead OR it is
alive and we simply do not know which.

It could still be that the cat is in some kind of indefinite state until we
actually observe it.

This cannot be solved without positing an ontology for the
theory, so it is definitely an interpretation dependent question.
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Recovery of the Equations of Classical
Mechanics

We should be able to identify quantities that obey the equations
of classical mechanics, but note that there are two options here:

The Liouville Limit: A probability density on phase space obeys the
Liouville equation

n
0
a—f={H,p} where {H,p}=Z\
=

dp O0H 0dp aH‘
dp;j0q; 0q;0p;

The Trajectory Limit: There exist canonically conjugate variables that

obey Hamilton’s equations

dt aq]' dt 6p}
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Recovery of the Equations of Classical
Mechanics

In a Y-complete theory, we should be able to derive the trajectory
limit:
We observe classical systems travelling along definite trajectories. If the

guantum state is all there is, we somehow need to derive this from the unitary
evolution of a quantum state.

In a Y-epistemic theory, we only expect the Liouville limit:

The quantum state has the same status as a probability density, so we should
expect it to behave as such in the classical limit. Whatever travels along
trajectories is not described by standard quantum theory.

In a Y-ontic, but not Y-complete, interpretation, it is completely non-
obvious what to expect.

So this is a subtly interpretation dependent question: what might be
perceived as a failure of classicality on one view need not be from
other points of view.
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An Important Caveat

The Newtonian limit of Special Relativity is straightforward:

Any particle travelling with v << ¢ will approximately obey classical
equations of motion.

Carefully engineered mesoscopic quantum systems display
quantum effects and we expect this can in principle be extended
to arbitrarily macroscopic systems.

So we only expect to obtain the classical limit for quantum states and

Hamiltonians that are typically found in nature, and only with high
probability.

It is more like the derivation of thermodynamics from statistical
mechanics:

i.e. only typical initial states give rise to the second law, only if the
dynamics is sufficiently mixing, and only with high probability.
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9.2) Wigner-Moyal Formalism

Classical mechanics is formulated on phase space whereas
quantum theory is formulated in Hilbert space. We need a
common mathematical language to connect the two.

We will formulate quantum theory in phase space. This leads to
the Wigner-Moyal formalism.

For simplicity, we will focus on the case of a single particle in one
dimension without spin. The ideas can be extended to more
general systems.
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Pseudo-Probability Densities

The first thing we have to do is to convert a quantum state p € £(L?(x))

Llnto a function W (x, p) on phase space that is analogous to a probability
ensity.

We associate a Hermitian operator Ax,p to each point in phase space,
called a phase point operator.

We then define W (x, p) = Tr(A,,p)
If we choose these operators to be (over)-complete, i.e.

400 400
f dxf dp Ayp =1

400 400
f dxf dp W(x,p) =1

In this case W (x, p) is called a pseudo-probability density. Note that it
can take negative values.

then
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Pseudo-Probability Densities

Suppose that we further require that the phase point operators
are orthonogonal

Tr(AxpAyr ») = N6(x —x")5(p — p")

Then we can recover the density operator via

1 + o + o
P Nf dxf dp W(x:p)Ax,p
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Observables

Now consider an observable (self-adjoint operator) M. This should
become a function on phase space. If we define

1
My (x,p) = = Tr(Ax »M)

then we will have M = f dxf dp My, (x,p)Ay,, and hence

Tr(Mp) = f +Oodx f +Oodp j +oodx f dp’ My, (x, D)W (x, p) Tr(Ax pAys 1)

=f dxf dp My, (x, p)W (x, p)

so the formula for taking expectation values is the same as in classical
probability.
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Dynamics

Now let’s look at time evolution

dp 1 dW(x,p) 1

T L T

Tr(Ay »[H, p])

diflep) il (77
dt  NinJ_,,

dX’dp’dX”dp”HW(X’,p’)W(X”,p”)Tr(Ax,p[A [ ’Ax",p"])

XD
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x-product and Moyal Bracket

To neaten this up, we can define a (non-commutative) product of
functions

+00
f*xglx,p)= Ni hf dx'dp'dx"dp" f(x', 0" )g(x", 0" )Tr(AxpAy’ 1) Ayrr yir)

and we define the Moyal Bracket as
{raty=rfrg—g~*f

Then we will have

dWw
— = ({Hw, W})

so we have a formal analogy with the Liouville equation % =S
where the Poisson bracket gets replaced with the Moyal Bracket.
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Wigner Function

A particular choice of pseudo-probability density is the Wigner
function, where the phase;gooint operators are chosen to be

1 .
Ayp =5 f dy e'Py/h ‘x+z>(x—Z

These are orthogonal Tr(Ax,prr’pr) = 2—;5(x —x")é(p —p') and
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Wigner Functions for Harmonic
Oscillator Energy Eigenstates

[5)

J S Lundeen at English Wikipedia [Public domain], via Wikimedia Commons
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Wigner Function

The Wigner function is the unique pseudo probability density
satisfying a set of natural conditions, which we won’t list in full
here. However, two of its useful properties are:

Correct marginal distributions:

+ 00 +0
f dx W p) = (plolp), f dp W(x,p) = (x|plx)

Galilean Invariance:
If p —» e~t@P/hpelaP/h then W (x,p) = W (x — a,p)
If p > e~ PX/hpeibX/h then W(x,p) » W(x,p — b)
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Wigner-Moyal Dynamics

We can expand the Moyal bracket as a formal power series in f.
This gives

dw
— = {{Hy, W}} = {Hy, W} + 0(h?)

It looks like we have derived a Liouville limit. Quantum
corrections to the Liouville equation are of order #?

We can also derive the corresponding equation for observables

dM
— = {(Mw, Hy}} = My, Hy} + O(h?)
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Caution!

Although it looks like we approximately have Liouville’s equation:
W (x, p) may have negative values, which is highly nonclassical.

Not all observables correspond to the functions you would expect in the
Wigner-Moyal formalism.

If M is a Weyl-ordered polynomial in X and p then we get what we
expect

M = (22p + 2p% + px?) gives My (x,p) = x?p
Other observables do not
M = xpx gives My (x,p) = x*p + a complicated integral
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9.3) Spreading of Wavepackets

We will now look at some examples where we get an exact Liouville limit,
i.e. the O(h?) term is zero.

First consider a free particle H = p2/2ql in a Gaussian state

4
w(xj 0) — ( 2) e—(x—a)2/40'2

2O

(x ~ a)2 20°%p?

W(x,p,0) = —exp v

: h : or ; h
Thishas Ax =0, Ap = 2o SO is @ minimum uncertainty state AxAp = >
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9.3) Spreading of Wavepackets

*Inunitsh =1, seto = 1/\/7, m = 1kg, a = 0. Plot 10/

| t=20 t=095s
10.0 10.0
5.0 5.0
0.0 0.0
-10.0

10.0 -10.0

10.0

10.0 -10.0 10.0 -10.0

* We get a good Liouville limit, but not a trajectory limit.
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Gaussian Quantum Mechanics

Generally, we find that Gaussian Quantum Mechanics has an
exact Liouville limit. If:

States have Gaussian distributions as their Wigner functions

Hamiltonians preserve Gaussianity = they are at most quadratic in the
canonical variables

H=a+ bx+cp+dx?*+ey* + fxy
POVMs are represented by Gaussian functions.

then the Wigner-Moyal formalism is identical to the Liouville
equation. See s.Bsartlett, T. Rudolph, R. Spekkens, Phys. Rev. A 86, 012103 (2012) fOr proof.

But this does not generally give a trajectory limit.
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9.4) Coherent States

To get a trajectory limit we want:

Wavepackets with minimal uncertainty in both position and
momentum.

Centroids of those wavepackets obey Hamiltonian mechanics.

The wavepackets do not spread over time.

Such wavepackets are called coherent states and they only exist
for a limited class of Hamiltonians.
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Coherent States of the Harmonic
Oscillator

Consider the Harmonic oscillator Hamiltonian H = (a*a + %) hw

We define a coherent state as an eigenstate of the lowering

operator
ala) = ala)

Since a is not self-adjoint, its eigenvalues are complex. If we write

them as
1( ma)X_I_, P )
Q=— /— i
V2 h Vmowh

then we can identify them with points in phase space.
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Coherent States of the Harmonic
Oscillator

Calculating the Wigner function of a coherent state, we get

1 mw > il >
Wix,p) = —exp|———x = X)* = ——(p — P)
so it is a Gaussian centered at (X, P) with uncertainties
h mwh h
AX=V%, Apsz 4 AXAP=E

More importantly, W (x, p) maintains its form over time with

X(t) = Asin(wt + ¢), P(t) = mwAcos(wt + ¢)
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Coherent States of the Harmonic
Oscillator

Curtright [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons

irsa: 19010028 Page 27/53



Coherent States of the Harmonic
Oscillator

Curtright [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons
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Coherent States of the Harmonic
Oscillator

Curtright [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons
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Coherent States of the Harmonic
Oscillator

Curtright [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons
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Coherent States of the Harmonic
Oscillator

Curtright [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons
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Coherent States of the Harmonic
Oscillator

Curtright [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons
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Coherent States of the Harmonic
Oscillator

Curtright [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons
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Coherent States in General

Most bosonic fields in nature have (approximate) coherent states

Example: Electromagnetic field. Ignoring photon-photon
interactions (which are order g*) the EM field has coherent
states that are approximately localized around specific values of

E and B. These obey the free-field Maxwell equations.

So long as the photons do not scatter off a charged particle
(which would cause entanglement) we can take these as a model

for coherent light travelling in free space, e.g. a laser beam.

irsa: 19010028 Page 34/53



Summary So Far

Gaussian quantum mechanics has a well defined Liouville limit.
Coherent states have a trajectory limit.

Both of these are severe restrictions on the class of states and
Hamiltonians we can deal with.

As soon as we introduce interactions, the EM field Hamiltonian is no
longer quadratic.

Even superpositions of two Gaussian states have negative Wigner
functions.

If we want a trajectory limit, we can’t even have all Gaussian states and
quadratic Hamiltonians due to spreading in phase space.
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Example: Schrodinger Cat State

Superposition of two coherent
states of a harmonic oscillator.

The Wigner function is negative at
some points (blue regions). This is
responsible for interference.

As the two components are moved
further apart, there is less
negativity, but it is always there
and can be amplified by moving
them together.

We need to get rid of the
negativity to model this as a
classical particle that is in one of
two states.

.......................

Emilio Pisanty [CC BY-SA 4.0
(https://creativecommons.org/licenses/by-
sa/4.0)], from Wikimedia Commons
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Example: Schrodinger Cat State

Superposition of two coherent
states of a harmonic oscillator.

The Wigner function is negative at
some points (blue regions). This is
responsible for interference.

As the two components are moved
further apart, there is less
negativity, but it is always there
and can be amplified by moving

them together.

We need to get rid of the
negativity to model this as a
classical particle that is in one of

two states.

-----------------------

Emilio Pisanty [CC BY-SA 4.0
(https://creativecommons.org/licenses/by-
sa/4.0)], from Wikimedia Commons
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Example: Schrodinger Cat State

Superposition of two coherent
states of a harmonic oscillator.

The Wigner function is negative at
some points (blue regions). This is
responsible for interference.

As the two components are moved
further apart, there is less
negativity, but it is always there
and can be amplified by moving

them together.

We need to get rid of the
negativity to model this as a
classical particle that is in one of

two states.

-----------------------

Emilio Pisanty [CC BY-SA 4.0
(https://creativecommons.org/licenses/by-
sa/4.0)], from Wikimedia Commons
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Example: Schrodinger Cat State

Superposition of two coherent
states of a harmonic oscillator.

The Wigner function is negative at
some points (blue regions). This is
responsible for interference.

As the two components are moved
further apart, there is less
negativity, but it is always there
and can be amplified by moving
them together.

We need to get rid of the
negativity to model this as a
classical particle that is in one of
two states.

---------------------

P \/ SN

Emilio Pisanty [CC BY-SA 4.0
(https://creativecommons.org/licenses/by-
sa/4.0)], from Wikimedia Commons
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Example: Schrodinger Cat State

.......................

Superposition of two coherent
states of a harmonic oscillator.

The Wigner function is negative at e — o
some points (blue regions). This is ‘ = :
responsible for interference. '

As the two components are moved

further apart, there is less '
negativity, but it is always there TR
and can be amplified by moving Euoiieate ;
them together.

We need to get rid of the

negativity to model this as a 2 \ _ / =i
classical particle that is in one of Emilio Pisanty [CC BY-SA 4.0
two states. (https://creativecommons.org/licenses/by-

sa/4.0)], from Wikimedia Commons
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9.5) Environmentally Induced
Decoherence

Suppose we have a system in a superposition of two macroscopically
distinct (approximately) orthogonal states

Y)Y = aly,) + Bly.)

e.g. |Y,) = [cat alive), [Y,) = |cat dead) or |1/Jj) = a large object at two
different locations.

The system is interacting with the environment all the time, e.g.
photons and air molecules scatter off it.

Suppose the system is initially uncorrelated with the scattering

particle
) xo0)

The scattered particle gets correlated (not necessarily a lot) with the
system, but the interaction hardly perturbs the system.

|1/Jj)|)(0) - |1/)j)|)(j) with |{x1lx2)| not necessarily = 0.

Pirsa: 19010028 Page 41/53



irsa: 19010028

9.5) Environmentally Induced
Decoherence

After one scattering event, the joint state will be

alp)x) + Bl x2)
and the reduced density operator of the system will be
p = |a|2|¢1)<¢1|+|3|2|¢2)(¢2|
+aB (X2l x ) )2l + Ba” Qealx2) [P X |

After N scattering events, we will have

alp)x)®N + Bl x2)®N
and

p = lal®| )1 |+IB1? |2 ),
+aB (x| + Ba (xalx2)Y 12 ) |
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9.5) Environmentally Induced
Decoherence
If the average time between scattering events is T then after

time t there willbe N = t/t such events

The modulus of the off-diagonal elements of the density

operator will be

|Cf/8*||()(2|)c,’1)|t/‘r

i.e. they decrease exponentially in t.
For sufficiently long t, we will have

p = lal? |y )1 | +IB12 [ )W

so it will be indistinguishable from a mixture. The timescale on
which this happens is usually extremely short.
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The General Framework

Suppose the system is described by Hilbert space Hg and the
environment by Hg so that the joint space is H¢ @ Hg. Write

the Hamiltonian as
H=Hs @ Ig+Is @ Hg + Hint

We define a pointer state as a state of the system that does not
get entangled with the environment in the course of this

evolution
[Wp(0))s|x(0))e = [YWp())slx())e
A sufficient condition for a pointer state is

[Hine, [Yp)p| @ Is] = 0

which is known as Zurek’s commutation condition.
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The General Framework

Exact pointer states need not exist for all Hamiltonians, but for
physically realistic Hamiltonians, we can usually find
approximate pointer states

[Hine, [Wp)(Wp| @ Is] = €

for some small €. These do not get entangled very much with the
environment.
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The Measurement Limit

Suppose the typical timescale (energy gap) of H;,¢ is large
compared with Hg. Then we can set Hg = 0.

Let Hiy = Ag @ Bg. Then, the pointer states will be the
eigenstates of As.

We can think of this interaction as measuring the observable Ag.
An initial state [)s = X; aj|aj)s will quickly evolve into

ps = ) |aj’1a)a;]
J
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The “Quantum” Limit

Suppose the typical timescale (energy gap) of Hi,¢ is small
compared with Hs.

Then, the pointer states will be eigenstates of Hg, i.e. energy
eigenstates.

Explains why microscopic systems that are well-isolated from the
environment are typically found in energy eigenstates, e.g. the
hydrogen atom.
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The Intermediate Regime

The intermediate regime is the most interesting (and most
difficult mathematically). Exact pointer states do not usually

exist, but for typical interactions we often get coherent states as
approximate pointer states.

So, our Schrodinger cat state

1
ﬁﬂ%) + |az))

would evolve to ~ %(|af1)(a1| + | az])

The negativity in the Wigner function would disappear and the
evolution would look like a mixture of two Gaussians under
Liouville dynamics.
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The Intermediate Regime

This regime is also important if you want to get a trajectory limit in
cases where the Wigner function spreads out over phase space.

If you start with a coherent state |a), after a time t the state will be a
superposition of coherent states

J da f(a)|a)
Note, this is not unique as coherent states form an overcomplete basis.
But this will quickly decohere to
ps ~ | da|f (a)|?|a)al

The centroids of each component will obey Hamilton’s equations, but
they will also spread and decohere into a mixture again.

If you track the mod-squared amplitude of these branches, the
overwhelming weight of probability will be on paths that are
approximately classical trajectories in phase space.
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What about chaotic systems?

If Hg is a Hamiltonian that exhibits chaos (exponential
divergence of nearby trajectories in phase space) then
decoherence may not act quickly enough to localize the Wigner
function in phase space.

This is a problem if you think we must always obtain a trajectory
limit.

However, even classically you cannot predict the exact trajectory
if you have even a tiny amount of uncertainty about the initial
conditions. Therefore, the predictions of Liouville mechanics for
minimal uncertainty initial states are indistinguishable from
those of Hamiltonian mechanics in practice.

For this reason, it is fine to only get a Liouville limit for chaotic
systems.
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How Do Other Quantum Effects
Disappear?

We have mostly been talking about interference, but why don’t

we typically see nonlocality, contextuality, etc. in the classical
limit?

These effects depend on being able to make a choice among
measuring different incompatible observables on the system.

When we observe a macroscopic system, we typically do so by
intercepting a small fraction of the environment of the system.

e.g. you are intercepting a small fraction of the photons that have
scattered off me.

We can only measure information about the system that is
encoded in that small fraction of the environment.
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How Do Other Quantum Effects
Disappear?

For example, consider the scattering state
) x)®N + Bl )x2)ON

If you make any quantum measurement on k << N of the
environment systems then you can determine the effective
measurement you have performed on the system (as in the quantum
steering Homework problem).

As N — oo you will find that all of these measurements are
compatible, i.e. there exists a POVM you could have done directly on
the system that gives you the correct outcome probabilities for all of
them.

Zurek’s quantum Darwinism says that classical information is that
which is redundantly encoded in the environment. This will be a
compatible set of measurements in the limit.
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Summary

Some systems look classical in the Wigner-Moyal formalism

Gaussian quantum mechanics has a Liouville limit
Coherent states give a trajectory limit

In other cases we need environmental decoherence to get a limit
Explains the disappearance of interference
Explains how Wigner functions become positive
Explains why observables become compatible

Gives an effective equivalence to an ensemble of trajectories obeying
Hamiltonian mechanics.

Decoherence works for the reduced density operator of the system.
State of the universe is still a pure entangled state, so it is not clear
that this solves actualization of measurement outcomes.
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