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8) Ontological Models

Definitions
Examples
Excess Baggage
Contextuality
Y-ontology

Bell’s Theorem
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8.6) Bell's Theorem

The entangled state

1
|(D+) e 5“0)/4 0% |O)B % |1)A X |1)B)

exhibits perfect correlations when both Alice and Bob measure in the {|0), |1)} basis
(or indeed the {|n+), |n—)} basis with 17 in the x — z plane.

According to the orthodox interpretation, Bob’s outcomes “pop intd existence”
nonlocally when Alice makes her measurement and the quantum state collapses.

EPR argued that the measurement outcomes must pre-exist in order to avoid
nonlocality.

This is exactly how it works in the Spekkens toy theory.
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In 1964, John
Stewart Bell proved
that the correlations
of entangled
guantum systems
cannot be explained

in this way.

We will explain a
version due to
Clauser, Horne,
Shimony and Holt.
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The CHSH Game

Get into groups of four.
In each group, choose one person to be:

Charlie
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The CHSH Game

Alice and Bob get together for a few minutes to decide their strategy.
Bob leaves the room with Dora. Alice and Charlie stay.

Charlie and Dora each flip a coin. Write down the outcome.

Alice and Bob have to write either +1 or -1 in response.

Alice and Bob win the game if:

Whenever the coin flips are HH, HT, or TH, they give the same answer.

Whenever the coin flips are TT, they give a different answer.
Repeat steps 3-5.

Bob and Dora come back in the room. They count how many times Alice and
Bob won as well as the total number of times they played.

Report the results back to me. The goal is to win the game 85% of the time.

Page 7/43



Pirsa: 19010027

Why can't Alice and Bob always win?
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Charlie’s Alice's Bob's Dora’s
coin flip answer answer coin flip

H H

i§ ik
Assuming the coin flips are uniformly random, Alice and Bob will win
at most 75% of the time in the long run.
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List of All Deterministic Strategies

Winning 75% | 75% | 25% | 25% | 75% | 25% | 75% | 25% | 25% | 75% | 25% | 75% | 25% | 25% | 75% | 75%
Probability
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Do Nondterministic Strategies Matter?

Suppose Alice and Bob do not choose a fixed strategy, but use classical
randomness (coin flips, dice throws, etc.) to choose it each time, i.e. they
decide to use strategy j, k, [, m with probability p; x 1. (j, k, [, m = £1).

On each round of the game they will still end up using a deterministic
strategy with winning probability < 75%.

The average of the winning probability cannot be higher thanthe winning
probability for the best deterministic strategy.

Alice and Bob might as well just pick the best deterministic strategy.
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What About Delaying the Decision?

Alice and Bob each have four local deterministic strategies (ignoring what the
other person is doing)

H +
T i

Alice and Bob could decide as follows:

Alice waits until she sees the outcome of her coin flip.

If it is H, she picks +/— with probability pg (e.g. by flipping a biased coin)

If it is T, she picks +/— with probability pI

Bob does similarly with distributions ¢} and q}
But this just amounts to picking strategy j, k, [, m with probability

Djktm = P} Pkl G

In other words, Alice and Bob could just have flipped all their coins at the
beginning, so we are back to the previous case.
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The CHSH Inequality

Charlie’s Alice’s Bob’s Dora’s
coin flip answer answer coin flip

H . . H

T i

Whatever strategy Alice and Bob use (deterministic, nodeterministic, delayed),
their outcome probabilities satisfy

P(a = b|H,H) + P(a = b|H,T) + P(a = b|T,H) + P(a # bITT) < 3
This is (a version of) the CHSH inequality.
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Quantum Violation

Now suppose that we allow Alice and Bob to use quantum systems to play
the game.

They initially prepare two qubits in a state |i) 45. Alice takes system A with
her and Bob takes system B.

If Alice’s coin flip is heads, she measures her system in the basis
{Iny +), [My—)}. If she gets the |y +) outcome she answers'a = +1.

If Alice’s coin flip is tails, she measures her system in the basis
{|np +), |np—)}. If she gets the |7l +) outcome she answers a = +1.

Bob does the same thing on his system with the bases {|my +), |my—)}
and {|mr +), |mr—)}.
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Quantum Violation

Suppose Alice and Bob prepare the state

1
|‘D+) — EUO)A X |O)B T Il)A X |1)B)

The outcome probabilities are
P(fi+,m +) = 2 cos?8,  P(7i+,m -)

P(i-m-) = %cosz% P(i—-m+) = %sinz%
where ¢ is the angle between 71 and 11 on the x-z plane of the Bloch sphere.
So we just have to choose the measurement angles and see what we get.
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Quantum Violation
P(a = b|H, H)

- P(ﬁH+,mH +) + P(ﬁH—,TTlH —)

= cos?(§)

_ 1+ cos(%)
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Quantum Violation
P(a = b|H, H)

- P(ﬁH+,mH +) + P(ﬁH—,TTlH —)

= cos?(§)

_ 1+ cos(%)
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Quantum Violation
P(a # b|T, T)

— P(ﬁT+, T?ET —) = P(ﬁT—, 77)11' +)

= sin?(3) = cos* ()

_ 1+ cos(%)
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Quantum Violation

Therefore, in the quantum case, we can get

P(a = b|H,H) + P(a = b|H,T) + P(a = b|T,H) + P(a # b|TT)

— - LoVra s
4cos?(F) = 2(1+5) ~ 3.141 > 3

Therefore, with quantum mechanics you can win the game with probability

cos?(F) = 3(1+5) ~ 85.4% > 75%

This is actually the maximum possible success probability in quantum
mechanics, known as the Tsirelson bound.
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The Usual Form of the CHSH Inequality

The CHSH inequality is usually expressed in terms of expectation values of
observables rather than probabilities.

To do this, note that we actually have four inequalities

Charlie's Alice's Bob's Dora's
coin flip Answer ATSWET coin flip

H H

1<P(a=b|H,H)+P(a=b|H,T)+ P(a=Db|T,H)+ P(a # b|TT) <3
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The Usual Form of the CHSH Inequality

Charlie's Alice's ob’s Dora’s

rl< ,-““.'- Hﬁ““-‘_ rl‘
1< P(a# b|H,H)+ P(a# b|H,T)+ P(a # b|T,H) + P(a = b|TT) < 3

or

-3 < —P(a # b|H,H) — P(a # b|H,T) — P(a # b|T,H) — P(a = b|TT) < -1
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The Usual Form of the CHSH Inequality

Because Alice and Bob’s answers a, b take values +1
(ab) = P(a = b) — P(a # b)

1< P(a=b|l|H H)+P(a=Db|H,T)+P(a=>b|T,H)+ P(a#b|TT) <3
—3 < —P(a # b|H,H) — P(a #+ b|H,T) — P(a # b|T,H) — P(a = b|TT) < -1

Summing these gives:

—2 < (ab)yy + (ab)yt + (ab)ry — (ab)rr < 2
which is the usual CHSH inequality.
And our quantum strategy gives

4cos®(f) — 4 (1 — cos®(5 ) = 8cos?(5) — 4 = %(1 +%) — 4 =2V2 ~ 2.828
which is what is usually called the Tsirelson bound.

Page 23/43



Conditional Independence

Two random variables, A and B are independent, denoted A L B if
P(A,B) = P(A)P(B)

The conditional probability of B given A is
_ P(A,B)
P(B|A) = P(A)
Independence can equivalently be written as
P(B|A) = P(B) or P(A|B) = P(A)

Two random variables, A and B are conditionally independent given C, denoted
A L B|C if any of the following three equivalent conditions holds

P(A|B,C) = P(A|C)

P(B|A,C) = P(B|C)

P(A, B|C) = P(A|C)P(B|C)
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Reichenbach’s Principle

Scientific realists usually think that correlations need to have causes.

Reichenbach’s principle encapsulates how this is supposed to work.

If A and B are correlated P(A, B) # P(A)P(B) then either:

A is the cause of B
B is the cause of 4

There is a common cause C for both A and B, and A L B|C
P(A,B|C) = P(A|IC)P(BIC)
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The Markov Condition

Reichenbach’s principle can be formulated in the language of Causal
(Bayesian) Networks.

A= 0Noalarm
A =1 Alarm sounding

B = 0 No burglar in house ( B I = 0 No fire in house

B = 1 Burglar in house F =1 Fire in house

P(A,B,F) = P(A|B, F)P(B)P(F)
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The Markov Condition

We draw a directed acyclic graph:
The vertices are the random variables.
We draw an edge from A to B if A is a direct cause of B.
The probabilities factor according to the Markov Condition

P(Xy, X5+, Xp) = P(Xn|pa(’Xn))---P(X2|pa(X2))P(X1|p.é(X1))

where pa(X) denotes the parents of X in the graph.
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Another Example

P(A,B,C,D,E) = P(E|C)P(D|B,C)P(C|A)P(B|A)P(A)
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Application to Bell Experiments

Suppose Alice’s coin flip and answer
happen at spacelike separation to Bob’s
coin flip and answer.

Since Alice and Bob’s wings of the
experiment are spacelike
separated, according to special
relativity (X%) cannot be direct
causes of (Y, B) and vice versa.

Let A be a complete description of
the state of affairs in a region that
screens off (X, A) from (Y, B)

Any lightlike path from (X, A) to

(Y, B) via the past must intersect

the region.

= Any common cause of (X, A)

and (Y, B) must be contained in A.
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Application to Bell Experiments

According to special Relativity, the
possible causal relationships are:

P(A,B,X,Y,2) o e
= P(B|Y,)P(A|X,DP(Y|D)P(X|D)P(A) o u
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Application to Bell Experiments

However, we normally assume that
the coin flips X and Y are freely
chosen, independently from the
system being measured.
This leads to the measurement
independence assumption
XeYaled
BEX YA = P(X,X)

With this, we have
P(A, B, X. Y, 1)

= P(B|Y,A)P(A|X,)P(Y)P(X)P(L)
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Application to Bell Experiments

P(A,B,X,Y, 1) = P(B|Y,)P(A|X, )P(Y)P(X)P(Q)

If we conditionalize on X, Y and A, we get
P(A,BIX, Y, 1) = P(B|Y, A)P(A|X, 1)
This condition is known as local causality
To reiterate, it follows from:
The Markov condition (Reichenbach’s principle)

The causal structure given by special relativity (spacelike separation)

The assumption that X and Y are chosen independently of the system being
investigated.
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Application to Bell Experiments

If we now compute the observed conditional probabilities, we will get
P(A,B|X,Y) = Z P(B|Y, D)P(A|X, )P(A)
A

Let’s think about what this says in terms of the CHSH game.
Alice and Bob get together to determine a joint strategy — call it A.

Based on A and X, Alice flips a biased coin to determine A with probability
P(A|X,A).

Based on A and Y, Bob flips a biased coin to determine B with probability
P(B|Y,A).

But this is exactly the sort of strategy we showed must satisfy the CHSH
inequality.

The quantum violation therefore rules out a locally causal model.
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Implications

If you accept the Markov condition
and measurement independence,

then there must be a superluminal
causal influence (nonlocality). For
example:

Your model violates relativity at the
ontological level.

We could instead reject the Markov
condition:

Correlations do not have to have causal
explanations.

This is appealing to anti-realists.
We could modify the Markov
condition: |

Causal explanations work differently in
quantum theory.

We could reject measurement
independence:
There is no free choice.
Superdeterminism
Retrocausality
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Summary of Ontological Models

If our interpretation of quantum mechanics fits into the ontological models
framework then it has to have a number of unappealing features:

Excess baggage

Contextuality

p-ontology

Nonlocality

Two options:

Bite the bullet and adopt an interpretation that has these features, viewing the no-go
theorems as justification for why we have to have these features (de Broglie-Bohm,
Spontaneous Collapse theories).

Go anti-realist or adopt a more exotic ontology that does not fit into the ontological models
framework (Copenhagenish, many-worlds).
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9) The Classical Limit of Quantum
Theory

Requirements for the Classical Limit
“Classiscal” Limit of the Path Integral
Ehrenfest’s Theorem

Wigner-Moyal Formalism

Spreading of Wavepackets

Coherent States

Environmentally Induced Decoherence
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9.1) Requirements of the Classical Limit

One of our requirements of an interpretation of quantum theory
was that it should “save the phenomena”. In particular, this
means we should be able to understand why the macroscopic
world looks “classical” to us.

There are several aspects of the classical limit, some of which
can be dealt with independently of interpretation, and some
which cannot.
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Disappearance of Quantum Phenomena

In the classical limit, we expect that typical quantum phenomena
should disappear or become effectively unobservable, e.g.

Quantum interference (except for electromagnetic fields)
Incompatibility of observables
Contextuality, nonlocality, etc.

Taken together, this says that our experiment should be
describable by classical probability theory instead of the rules of
quantum theory.

This can be understood independently of interpretation.
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Actualization of Measurement Qutcomes

If we solve the first question then we will have a description of
our system in terms of classical probabilities.

How do we know that those probabilities can be interpreted in
terms of classical uncertainty?

e.g. even if we specify Prob(cat alive) = Prob(cat dead) = %and itis

not practical to perform an interference experiment, how do we know
that this describes a situation in which EITHER the cat is dead OR it is
alive and we simply do not know which.

It could still be that the cat is in some kind of indefinite state until we
actually observe it.

This cannot be solved without positing an ontology for the
theory, so it is definitely an interpretation dependent question.
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Recovery of the Equations of Classical
Mechanics

We should be able to identify quantities that obey the equations
of classical mechanics, but note that there are two options here:

The Liouville Limit: A probability density on phase space obeys the
Liouville equation

dp(q,p)

dH dp 61{ 6;)‘
Opj-aqj Oqjapj

The Trajectory Limit: There exist canonically conjugate variables that

obey Hamilton’s equations
dt — dgq;’ dt — dp;

n
7 = —{p,H} where {p,H}zZ[
=1
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Recovery of the Equations of Classical
Mechanics

In a )-complete theory, we should be able to derive the trajectory
limit:
We observe classical systems travelling along definite trajectories. If the

quantum state is all there is, we somehow need to derive this from the unitary
evolution of a quantum state.

In a Y-epistemic theory, we only expect the Liouville limit:

The quantum state has the same status as a probability density,‘ so we should
expect it to behave as such in the classical limit. Whatever travels along
trajectories is not described by standard quantum theory.
In a Y-ontic, but not Y-complete, interpretation, it is completely non-
obvious what to expect.

So this is a subtly interpretation dependent question: what might be
perceived as a failure of classicality on one view need not be from
other points of view.
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