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In 2013, Prof. Emlyn Hughes at Columbia University introduced
his GenEd class on quantum theory in the following way.

Warning: This video contains offensive imagery
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eo make you feel about quantum mechanics?

How does this vid
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“In order to learn guantum mechanics, you have to strip to your
raw, erase all the garbage from your brain, and start over again.
Nothing you have learned in your life up till now is in any way
helpful to prepare you for this, because everything you do in your
everyday life is totally opposite to what you are going to learn in
guantum mechanics. And so, 've been tasked with the impossible

challenge of having to teach you guantum mechanics in one hour.
What, basically the most brilliant minds, Einstein and so on,
couldn’t figure out working on it their whole life.”
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“You are going to be very confused by quantum mechanics. As
much as if your physics professor did a weird performance art
piece for no apparent reason. The smartest people in the world
do not understand it. Therefore, I, an extremely smart professor,
cannot possibly be expected to teach you, with your small
undergraduate brains, this subject in a way that you can
understand it. Nevertheless, suck it up because you have to pass

an exam on it at the end”

My interpretation of what Emlyn Hughes meant.
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An Obligatory Feynman Quote

“I think | can safely say that nobody understands quantum
mechanics” — “The character of Physical Law”, chapter 6, p. 129

* This quote appears in almost every popular science book about
quantum theory, and many textbooks too.

° | think it is an excuse for teaching quantum theory badly, i.e. “I
am confused about quantum theory. The smartest physicist was
confused too. Therefore, you will be confused and it is not my
fault.”
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A lesser known Feynman quote

“We always have had ... a great deal of difficulty in
understanding the world view that quantum mechanics
represents. At least | do, because I'm an old enough man
that | haven't got to the point that this stuff is obvious to

me. Okay, | still get nervous with it. And therefore, some of
the younger students ... you know how it always is, every
new idea, it takes a generation or two until it becomes
obvious that there's no real problem. It has not yet become
obvious to me that there's no real problem. | cannot define
the real problem, therefore | suspect there's no real

\\ problem, but I'm not sure there's no real problem.” -

\ “Simulating Physics with Computers”, Internatizgc;l Journal of Theoretical Physics, volume 21, 1982 p
-488 ' 7S
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* Our task is to approach this as a scientific question. Specifically:
« Define the theory in as clear and general a way as possible.
* Define the real problem.

Show how we can use math, physics, philosophy and experiment to
address the problem.

Explore the proposed solutions.
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Some Wrong Answers

* Quantum theory describes a world far from our everyday experience,
so there is no reason it should be comprehensible. We have to get
used to abstraction.

* The same is true of relativity.
* Interpretation of quantum theory is irrelevant for practical
applications, let’s leave it to philosophers.
* This is a selection effect.

* Modern applications like quantum information/computation show that
thinking about foundations is useful.

* It leads to novel experiments, e.g. Bell’s theorem

: * It may suggest how to adapt the theory beyond its current scope, e.g.in
A guantum gravity.
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1) A (Biased) History of Quantum Theory
2) Postulates of Quantum Theory

3) Quantum Phenomenology
4) The Generalized Formalism

\/\V/C@I‘? 2

5) Realism vs. Antirealism
6) Epistricted Classical Theories
)C mm@:ll Models
No-Go Theorems

Pirsa: 19010017

Page 11/37




n/

Wfqﬂl JOﬂﬁEy

Old Quantum
theory

12 = hf
o= il

etc.

Quantum Mechanics

[H@'&@ﬁﬁ)@ﬁr matrix
mechanics (1925)

Schrodinger wave mechanics
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Hilbert space formalism
(1930-32)

Taking Quantum Theory Seriously As A
Fundamental Theory

Bohm (1952), Everett (1957), Bell (1964- )
Wavefunction of the universe
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Second Quantum
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Third Quantum
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First Quantum Revolution

* Old guantum theory was not a full physical theory. Just a series
of ad hoc rules that contradicted existing physics.

° It was necessary to judiciously choose which part of the system
to apply quantum rules to, leaving the rest classical.

* This survived into Copenhagen-style quantum mechanics.
° Physicists were not particularly bothered. They were used to doing it.

* Copenhagen made this into a virtue rather than a vice.
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Second Quantum Revolution

* Heisenberg’s matrix mechanics was originally based on the idea
that systems were always in (what we now call) stationary states,
and from time to time would jump between them
indeterministically.

* This was inspired by the Bohr atom.

* Heisenberg found that he needed physical quantities
(observables) to be matrices to get this to work.

* Non-stationary states were a later addition (with Born and
\ Jordan), and quite alien to Heisenberg’s initial thinking.

\

A
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Second Quantum Revolution

* Schrodinger initially thought of his wavefunction as a physical

field. There was no probability rule. Particles were supposed to
emerge somehow from the dynamics.

* This was given up when it was found that, with realistic
Hamiltonians, wavefunctions always spread in time.

° Entanglement also makes the physical field interpretation
difficult.

* Max Born introduced the probability wave interpretation in
1926. Schrodinger was later forced to accept it.
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Second Quantum Revolution

* The Heisenberg and Schrodinger theories were unified (by
Schrodinger, Dirac, and von Neumann) resulting in the modern
Hilbert space formalism.

* Note that there were initially two perfectly coherent ideas of what
quantum theory is about. The unification is true to neither of them.

* Heisenberg had to “borrow” non-stationary states. Schrodinger had to
“borrow” probabilities.

* As a result, it became completely unclear what the theory was
fundamentally about.
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The Two Churches of Quantum Theory

* Schrodinger and Heisenberg are mathematically equivalent, but
a conceptual divide still exists.

* The Church of the Larger Hilbert Space:

° Quantum theory is a dynamical theory, much like a classical field theory,
but with a weirder object called a wavefunction replacing the classical
field. Allis to be derived from a wavefunction evolving unitarily in time.

* The Church of the Smaller Hilbert Space

° Something weird happened to the algebra of observables, they became
non-commutative. Quantum theory is the only consistent probability
\ theory for such observables.
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Third Quantum Revolution

* Starting in the 1950’s, People like Bohm and Everett were
dissatisfied with the Copenhagen idea that there was a
necessary split between the classical and quantum worlds.

* If quantum theory is fundamental, we should be able to describe the
whole universe as a quantum system, with no external classical world.

* This led to a reanalysis of foundations, leading to things like
Bell’s theorem and quantum information.

* This has been a very slow-burn revolution.
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Overview
State Space

3) Observables

4) Dynamics

5) Composite Systems
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2.1) Overview

' fateSrace: A physical system 4 is associated with a.(complex). Hilbert . o
sYPRGH gé_éiﬂlw-:“i according to the Schrodinger equation
2. States: A (pure) state of a physical,system is a unit vector
| |, € H, (upto a global phase).
_ Equivalently, dynamics is unitary [ (t)) = U(t)|y(0)),
3. Observables: Measurable physical quantities correspond to self-adjoint
operators Mt = M, which can th;e(\;v)rii;c}?pén{spectral form

M=% AP
d’mms&ﬁgmme&m‘a méasmec_rsedtocbf% an'ei\he@'rgerl\aaltleﬂﬂyert space
. "ThéBofn Hile" WREF M $(i ra_e__g' bnelé ftftceem assigned the state |)),
r

the outcome A; occurs wit probability

where @ denotes the te?wlgg%)pjggglu?t(w|%lw>
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2.1) Overview

1. State Space: A physical system A is associated with a (complex) Hilbert
space H 4.

2. States: A (pure) state of a physical system is a unit vector
W) 4 € Hy (up to a global phase).

3. Observables: Measurable physical quantities correspond to self-adjoint
operators MT = M, which can be written in spectral form

The possible outcomes of a measurement of M are the eigenvalues Aj.

4. The Born rule: When M is measured on a system assigned the state [1)),
\ the outcome A; occurs with probability Prob(ﬂjllj)) = (1,0|Pj|zp).
\

\
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on

A Hap = Ha @ Hp

2.1) Overview

Dynamics: An isolated (not interacting with the environment or being measured)
system evolves according to the Schrodinger equation

L) _
i =2 = HJp).

Equivalently, dynamics is unitary Iw(t)‘) = U(t)|yp(0)),

UT(OU() = I

Composite systems: A system AB composed of two subsystems, A with Hilbert s
H 4 and B with Hilbert space Hg has a Hilbert space

\ where @ denotes the tensor product.
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.1) Overview

Dynamics: An isolated (not interacting with the environment or being measured)
system evolves according to the Schrédinger equation

12— iy,

ot

Equivalently, dynamics is unitary [1(t)) = U(t)[(0)),

Ut@u) =1

Aﬁl@mﬁ_ /‘—} C@mL,SC‘C] OU two mlUibs\f/ngan_ ﬁ\ W ‘E!" .l
':'?;.ff. '\PM B wnh: nlill'_)@fu space Jn{, > |Fﬁ?‘§§ H 1Il“|_o,@r1 J:}—Lf:)
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2.2) State Space

1. State Space: A physical system A is associated with a (complex)
Hilbert space H 4.

. States: A (pure) state of a physical system is a unit vector
W), € H 4 (up to a global phase).

* The fact that the state space is a linear (vector) space is usually
attributed to the superposition principle:

° If [))4 and |@) 4 are physical states then a|) 4 + B|p), is also a
physical state for any a, 8 € C.

* This does not explain why the field should be C (as opposed to R
or something else) or why it needs to be an inner product space.

N
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A system with a 2d Hilbert space is
called a qubit. The basis vectors
are labelled

0 = 2+ = (})

N as
, o> . n>>

0 rr*-‘x‘"o)tyriOJlINg g@) a unit vector

8 /a\
D, nirlu)..J ap, (o0 *g}
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2.3) Observables

3. Observables: Measurable physical quantities correspond to self-adjoint operators MT =
M, which can be written in spectral form

The possible outcomes of a measurement of M are the eigenvalues 4;.
4. The Born rule: When M is measured on a system assigned the state i), the outcome A
occurs with probability Ptob(l |1/J (l,blP |1,b)

* As far as the probabilities are concerned, the eigenvalues Aj are just labels
for the outcomes of the measurements. All that matters is the set of
projectors {P;}, so we will often work with them directly.

\\ * Aset {P;} of orthogonal P;P; = §;; projectors that satisfy Z P; = Il is called
\ a Projector Valued Measure (PVM).
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2.3) Observables

- If all the projectors in a PVM are 1-dimensional P; = |¢;)(¢;| then {|¢;)} is
m andn@m@[rtafuu[l basis and we call the PVM a fm@@:@wf@ )@m ﬁfﬂj LfﬂJ@ @@gﬂg
\ this case, the Born rule is:

Prob(i1v) = (v1711¥) = (1)) = i)

\0 1
‘_F];‘i hj_o):jm ”'0)) HJ’l),]:

,/J,- - rﬂ%: H.J*lr)}

u\_\mr:f\& [ H =Xes = [}

{lx+), |x—)} Not a basis measurement

1
” X 1;3 — 'f-,../.?_um)\ -+ | 1 )
V&

Pirsa: 19010017 Page 27/37




* After a measurement, the state of the system changes. The rule
Pilp)y
JwlBlw)

) —

n‘g«; ((@@m@@iﬂ]xy) ) called the Liiders’ rule and is often stated as one
he postulates of quantum theory.

lo not consider this a postulate because it doe
Ilrf"lr*ﬂj\,lnT‘IL nat obeys the Luders’ rule is oftel
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2.4) Dynam

Dynamics: An isolated (not interacting with the @mw[’[?o nment or
being measured) system evolves according to the Schrodinger
equation

O
U_C[]f) H|p).

Equivalently, dynamics is unitary [((t)) = U(t)[(0)),

UH@UE) = i
additional postulate. We can derive it from

;
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e
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2.4) Dynamics

* Quantum systems obey the superposition principle: If |11 (t)) and |y, (t)) are
solutions to the equation of motion then so is

al, (1)) + Bl ()

* This implies that time evolution can be described by a linear operator U (t), such

that
lY(t)) = U()[(0))
* In order to conserve probabilities, dynamics should preserve normalization. To

see this, consider an orthonormal basis {|j)}. The Born rule probability of getting
outcome [j) at time t = O is

\ Prob(j, 0) = [(j/[¥)I? = (bLi)il)
\‘-\so the probability of getting any outcome is
A > Prob(,0) = » @li)jihw) = (W) = 1
A i i
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* If we want this to also be true at time t then ,_
Prob(j, t) = ()12 = (U@ = (W|UTOINGIU@|w)
and ¥ Prob(j, t) = |UT(OU(®]).
If we want this to equal 1 then we must have
(WUt OUOY) = W) = @)
This implies that U (£)U(t) = I, which is the definition of a unitary matrix.
We also want U(0) = I, and we want evolution to be continuous, so suppose, f

- -
S} (P L

small At,
U(t) = I + AtA

LS MDA S WACORIGA | [Py [ G R S ey e
to first order for some matrix A.
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2.4) Dynamics

« Now, if U(t) is unitary, then A must be anti-Hermitian, i.e. AT = —A.
Proof: Ut (At U(AL) = f/ = (( + AtA \‘f))((// + AtA) =1
AUJ( 1I’ _IL /l)) O(,/A\I ;)) = Z/
Therefore, all iiin@ terms of order At and higher must be zero, so
AT A=0 o AT ==A,
The \lr@,ﬂj[)[r , We [md\l@
)
el — ]]ﬁln_n_l
A =0 /A\ii

If we now define H = iA then H \V vill be E

O
! o =H \,Wlﬁ‘@?;

= Al(0))

(Hi@ﬁ@@)? = Ui@(@») =
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2.5) Composite Systems

6. Composite systems: A system AB composed of two subsystems, A with
Hilbert space H 4 and B with Hilbert space Hg has a Hilbert space

Hap = Ha Q@ Hp

where & denotes the tensor product.

X Hp is defined as the Hilbert space spanned by vectors of the form
Izp/} (%) Igb)B, where ), € H, and [p)p € Hp.

e If |0)4,|1)4,:-|d4)4 is a basis for H 4, and

IO)B, |1>B' |dB)B is a basis for HB then
| 0)4 ® [0)5,|0)4 ® [1)p, - |0)4 ® |dg)g,
\ Da®10)s, 1) ® 1), |1), @ |dg)s,

IdA>A X IO)Br |dA>A 0y |1>8» IdA>A X |dB)B
is a basis for H,; @ Hp.
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2.5) Composite 5

In other words, H, @ Hp @@miqgis of all vectors of the form

ﬂ’/]I ﬂ}-

B = >z> @ilja ® Ik)g

jj...

where a;;, € C.
" Note: the dimension of H, ® %J isdy X dg.
Physicists like to get sloppy wi tation, by wrwm

“l/>/! IJ » J >i.? wT >/u;

or even

i) & [k) = 1j)lk) = |jk)

if the system label is obvious from the e ordering.
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Note that the dimension increases exponentially wit
number ¢ QI - systems. If a system has DumﬁClﬁLllC)1nu d ulml"lm |
product of n such systems has dimension d™.
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Interference

| The No-Cloning Theorem

3) Orthodoxy and the Measurement Problem
1) The Einstein-Podolsky-Rosen Argument

5) Quantum Teleportation

Pirsa: 19010017

Page 36/37




Interference

The No-Cloning Theorem

Orthodoxy and the Measurement Problem
The Einstein-Podolsky-Rosen Argument

Quantum Teleportation
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