Title: The complicial sets model of higher â^ž-categories

Date: Jan 09, 2019 02:00 PM

URL: http://pirsa.org/19010001

Abstract: While it's undeniably sexy to work with infinite-dimensional categories "model-independently,― we contend there is a categorical imperative to familiarize oneself with at least one concrete model in order to check that proposed model-independent constructions interpret correctly. With this aim in mind, we recount the n-<i>complicial sets</i>e> model of (â^ž,n)-categories for 0 ≤ ≤ â°ž, the combinatorics of which are quite similar to its low-dimensional special cases: quasi-categories (n=1) and Kan complexes (n=0). We conclude by reporting on an encounter with 2-complicial sets in the wild, where a suitably-defined fibration of 2-complicial sets enables the <i>comprehension construction</i>e> a co/cartesian fibration of (â^ž,1)-categories into a homotopy coherent functor, exhibit a quasi-categorical version of the "unstraightening― construction, and define an internal model of the Yoneda embedding for (â^ž,1)-categories.

Pirsa: 19010001 Page 1/31

Johns Hopkins University

The complicial sets model of higher ∞-categories

Perimeter Institute for Theoretical Physics

Pirsa: 19010001 Page 2/31

A prehistory of higher categorical physics

John C. Baez and Aaron Lauda

• A prehistory of *n*-categorical physics In H. Halvorson (Ed.), Deep Beauty: Understanding the Quantum World through Mathematical Innovation (pp. 13-128). arXiv:0908.2469

Pirsa: 19010001 Page 3/31

The idea of a higher ∞ -category

An ∞ -category, a nickname for an $(\infty, 1)$ -category, has:

- objects
- I-arrows between these objects
- with composites of these 1-arrows witnessed by invertible 2-arrows
- with composition associative up to invertible 3-arrows (and unital)
- with these witnesses coherent up to invertible arrows all the way up

A higher ∞ -category, meaning an (∞, n) -category for $0 \le n \le \infty$, has:

- objects
- I-arrows between these objects
- 2-arrows between these 1-arrows
- •
- n-arrows between these n-1-arrows

Pirsa: 19010001 Page 4/31

Fully extended topological quantum field theories

The (∞, n) -category Bord_n has

- objects = compact 0-manifolds
- k-arrows = k-manifolds with corners, for $1 \le k \le n$
- n + 1-arrows = diffeomorphisms of n-manifolds rel boundary
- n+m+1-arrows = m-fold isotopies of diffeomorphisms, $m \ge 1$ often with extra structure (eg framing).

A fully extended topological quantum field theory is a homomorphism with domain $Bord_n$, preserving the monoidal structure and all compositions. The cobordism hypothesis classifies fully extended TQFTs of framed bordisms by the value taken by the positively oriented point.

Dan Freed

• The cobordism hypothesis, Bulletin of the AMS, vol 50, no 1, 2013, 57–92; arXiv:1210.5100

Pirsa: 19010001 Page 5/31

On the unicity of the theory of higher ∞ -categories

The schematic idea of an (∞, n) -category is made rigorous by various models: θ_n -spaces, iterated complete Segal spaces, Segal n-categories, n-quasi-categories, n-relative categories, n-relative categories,

Theorem (Barwick–Schommer-Pries, et al). All of the above models of (∞, n) -categories are equivalent.

Clark Barwick and Christopher Schommer-Pries

 On the Unicity of the Homotopy Theory of Higher Categories arXiv:1112.0040

But the theory of higher ∞ -categories has not yet been sufficiently developed in any model, so there is "analytic" work still to be done.

Pirsa: 19010001 Page 6/31

Plan

Goal: introduce a user-friendly model of higher ∞ -categories

1. A simplicial model of $(\infty,1)$ -categories

2. Towards a simplicial model of $(\infty, 2)$ -categories

3. The complicial sets model of (∞, n) -categories

4. Complicial sets in the wild

Pirsa: 19010001

Pirsa: 19010001 Page 8/31

The idea of a 1-category

A 1-category has:

- objects: •
- I-arrows: → →
- composition: $\bullet \xrightarrow{f} \bullet \xrightarrow{g} \bullet$
- identity I-arrows: ==== •
- identity axioms: \bullet \xrightarrow{f} \bullet \bullet $\xrightarrow{f \circ \text{id} = f}$

• associativity axioms:

Pirsa: 19010001

From 1-categories to $(\infty, 1)$ -categories

In an $(\infty, 1)$ -category, the composition operation and associativity and unit axioms become higher data.

An $(\infty, 1)$ -category has:

- ullet objects ullet; I-arrows ullet \longrightarrow ullet ; identity I-arrows ullet \longrightarrow

Pirsa: 19010001 Page 10/31

The idea of a 1-category

A 1-category has:

- objects: •
- 1-arrows: → •
- composition: $\bullet \xrightarrow{f} \bullet \xrightarrow{g} \bullet$
- identity I-arrows: ==== •
- identity axioms: \bullet \xrightarrow{f} \bullet \bullet $\xrightarrow{f \circ \text{id} = f}$

• associativity axioms:

Pirsa: 19010001

From 1-categories to $(\infty, 1)$ -categories

In an $(\infty, 1)$ -category, the composition operation and associativity and unit axioms become higher data.

An $(\infty, 1)$ -category has:

- ullet objects ullet; I-arrows ullet \longrightarrow ullet ; identity I-arrows ullet \longrightarrow
- composition $f \searrow g$ witnessed by invertible 2-arrows
- identity composition witnesses

invertible 3-arrows
witnessing associativity

Pirsa: 19010001 Page 12/31

A model for $(\infty, 1)$ -categories

In a quasi-category, one popular model for an $(\infty, 1)$ -category, this data is structured as a simplicial set with:

- 0-simplices = = objects
- I-simplices = \longrightarrow = I-arrows
- 2-simplices = $f \xrightarrow{g} g$ = binary composites
- 3-simplices = $\underbrace{\int_{j}^{f} \frac{k}{g} \frac{k}{h}}_{l}$ = ternary composites
- n-simplices = n-ary composites
- with degenerate simplices used to encode identity arrows and identity composition witnesses

Pirsa: 19010001 Page 13/31

A model for $(\infty, 1)$ -categories

A quasi-category is a "simplicial set with composition": a simplicial set in which every inner horn can be filled to a simplex.

Low dimensional horn filling:

An inner horn is the subcomplex of an n-simplex missing the top cell and the face opposite the vertex \bullet_k for 0 < k < n.

Corollary: In a quasi-category, all n-arrows with n > 1 are equivalences.

Pirsa: 19010001 Page 14/31

Summary: quasi-categories model ∞-categories

A quasi-category is a model of an infinite-dimensional category structured as a simplicial set.

- Basic data is given by low dimensional simplices:
 - 0-simplices = objects
 - I-simplices = I-arrows
- Axioms are witnessed by higher simplices:
 - 2-simplices witness binary composites
 - 3-simplices witness associativity of ternary composition
- Higher simplices also regarded as arrows: n-simplices = n-arrows
- Axioms imply that n-arrows are equivalences for n > 1.

Thus a quasi-category is an $(\infty, 1)$ -category, with all n-arrows with n > 1 weakly invertible.

Pirsa: 19010001 Page 15/31

Pirsa: 19010001 Page 16/31

Towards a simplicial model of $(\infty,2)$ -categories

Page 17/31

Pirsa: 19010001

Towards a simplicial model of an $(\infty, 2)$ -category

How might a simplicial set model an $(\infty, 2)$ -category?

- 0-simplices = = objects
- I-simplices = \longrightarrow = I-arrows

• 2-simplices =
$$\int_{h}^{f} \int_{h}^{g} = 2$$
-arrows

Problem: the 2-simplices must play a dual role, in which they are

- interpreted as inhabited by possibly non-invertible 2-cells
- while also serving as witnesses for composition of 1-simplices

in which case it does not make sense to think of their inhabitants as non-invertible.

Idea: "mark" the 2-simplex witnesses for composition and demand that these marked 2-simplices behave as 2-dimensional equivalences.

Pirsa: 19010001 Page 18/31

Towards a simplicial model of an $(\infty, 2)$ -category

• marked 2-simplices $f \xrightarrow{g} g$ witness 1-arrow composition

Now 3-simplices witness composition of 2-arrows:

Pirsa: 19010001

Pirsa: 19010001 Page 20/31

Marked simplicial sets

For a simplicial set to model a higher ∞ -category with non-invertible arrows in each dimension:

- It should have a distinguished set of "marked" n-simplices witnessing composition of n-1-simplices.
- Identity arrows, encoded by the degenerate simplices, should be marked.
- Marked simplices should behave like equivalences.
- In particular, 1-simplices that witness an equivalence between objects should also be marked.

This motivates the following definition:

A marked simplicial set is a simplicial set with a designated subset of marked simplices that includes all degenerate simplices.

The symbol "≃" is used to decorate marked simplices.

Pirsa: 19010001 Page 21/31

Complicial sets

Recall:

A quasi-category is a "simplicial set with composition": a simplicial set in which every inner horn can be filled to a simplex.

A complicial set is a "marked simplicial set with composition": a simplicial set in which every admissible horn can be filled to a simplex and in which composites of marked simplices are marked.

Low dimensional admissible horn filling:

and if f and g are marked so is $g \circ f$.

Pirsa: 19010001 Page 22/31

Complicial sets

A complicial set is a "marked simplicial set with composition": a simplicial set in which every admissible horn can be filled to a simplex and in which composites of marked simplices are marked.

Low dimensional admissible horn filling:

and if α and β are marked so is $\alpha * \beta$.

Pirsa: 19010001 Page 23/31

Admissible horns

An n-simplex in a marked simplicial set is k-admissible — "its kth face is the composite of its k-1 and k+1-faces" — if every face that contains all of the vertices $ullet_{k-1}, ullet_k, ullet_{k+1}$ is marked.

Marked faces include:

- the n-simplex
- all codimension-I faces except the (k-1)th, kth, and (k+1)th
- ullet the 2-simplex spanned by $\{ullet_{k-1},ullet_k,ullet_{k+1}\}$ when 0 < k < n
- the edge spanned by $\{ullet_0,ullet_1\}$ when k=0 or $\{ullet_{n-1},ullet_n\}$ when k=n.

An k-admissible n-horn is the subcomplex of the k-admissible n-simplex that is missing the n-simplex and its k-th face.

Pirsa: 19010001 Page 24/31

Strict ω -categories as strict complicial sets

A strict complicial set is a complicial set in which every admissible hom can be filled uniquely, a "marked simplicial set with unique composition."

Any strict ω -category $\mathcal C$ defines a strict complicial set $N\mathcal C$ whose n-simplices are strict ω -functors

$$\mathcal{O}_n \to \mathcal{C}$$

where

- ullet \mathcal{O}_n is the free strict n-category generated by the n-simplex and
- an n-simplex is marked in $N\mathfrak{C}$ just when the ω -functor $\mathfrak{O}_n \to \mathfrak{C}$ carries the top-dimensional n-arrow in \mathfrak{O}_n to an identity in \mathfrak{C} .

The strict complicial set NC is called the Street nerve of C.

Street-Roberts Conjecture (Verity). The Street nerve defines a fully faithful embedding of strict ω -categories into marked simplicial sets, and the essential image is the category of strict complicial sets.

Pirsa: 19010001 Page 25/31

Strict ω -categories as weak complicial sets

Strict ω -categories can also be a source of weak rather than strict complicial sets, simply by choosing a more expansive marking convention.

Any strict ω -category $\mathcal C$ defines a complicial set $N\mathcal C$ whose n-simplices are strict ω -functors

$$O_n \to \mathcal{C}$$

where

- ullet \mathcal{O}_n is the free strict n-category generated by the n-simplex and
- an n-simplex is marked in $N\mathcal{C}$ just when the ω -functor $\mathcal{O}_n \to \mathcal{C}$ carries the top-dimensional n-arrow in \mathcal{O}_n to an equivalence in \mathcal{C} .

Moreover the complicial sets that arise in this way are saturated, meaning that every equivalence is marked.

Pirsa: 19010001 Page 26/31

The *n*-complicial sets model of (∞, n) -categories

An n-complicial set is a saturated complicial set in which every simplex above dimension n is marked.

For example:

- the nerve of an ordinary I-groupoid defines a 0-complicial set with everything marked
- the nerve of an ordinary 1-category defines a 1-complicial set with the isomorphisms marked
- the nerve of a strict 2-category defines a 2-complicial set with the 2-arrow isomorphisms and 1-arrow equivalences marked

In fact:

- A 0-complicial set is the same thing as a Kan complex, with everything marked.
- A 1-complicial set is exactly a quasi-category, with the equivalences marked.

Pirsa: 19010001 Page 27/31

Summary: complicial sets model higher ∞ -categories

A complicial set is a model of an infinite-dimensional category structured as a marked simplicial set.

- Basic data is given by simplices:
 - 0-simplices = objects
 - n-simplices = n-arrows
- Axioms are witnessed by marked simplices:
 - marked n-simplices exhibit binary composites of (n-1)-simplices
- Marked simplices define invertible arrows:
 - marked n-simplices = n-equivalences
- In a saturated complicial set, all equivalences are marked.

An n-complicial set, a saturated complicial set in which every simplex above dimension n is marked, is a model of an (∞, n) -category.

Pirsa: 19010001 Page 28/31

A simplicial set of simplicial bordisms (Verity)

A n-simplicial bordism is a functor from the category of faces of the n-simplex to the category of PL-manifolds and regular embeddings satisfying a boundary condition.

• Simplicial bordisms assemble into a semi simplicial set that admits fillers for all horns, constructed by gluing in cylinders.

Pirsa: 19010001 Page 29/31

A complicial set of simplicial bordisms (Verity)

The Kan complex of simplicial bordisms can be marked in various ways:

- mark all bordisms as equivalences
- mark only trivial bordisms, which collapse onto their odd faces
- mark the simplicial bordisms that define h-cobordisms from their odd to their even faces

Theorem (Verity). All three marking conventions turn simplicial bordisms into a complicial set, and the third is the saturation of the second.

Pirsa: 19010001 Page 30/31

Complicial sets defined as homotopy coherent nerves

The homotopy coherent nerve converts a simplicially enriched category into a simplicial set.

Theorem (Cordier-Porter). The homotopy coherent nerve of a Kan complex enriched category is a quasi-category.

Theorem (Cordier-Porter). The homotopy coherent nerve of a 0-complicial set enriched category is a 1-complicial set.

Similarly:

Theorem*(Verity). The homotopy coherent nerve of a n-complicial set enriched category is a n+1-complicial set.

In particular, there are a plethora of 2-complicial sets of ∞ -categories.

Pirsa: 19010001 Page 31/31