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Abstract: <p>In quantum theory, the no-information-without-disturbance and no-free-information principles express that those observables that do
not disturb the measurement of another observable and those that can be measured jointly with any other observable must be trivial, i.e., coin tossing
observables. We show that in the framework of general probabilistic theories these principles do not hold in genera. In this way, we obtain
characterizations of the probabilistic theories where these principles hold and we show that the two principles are not equivalent.& nbsp;& nbsp; </p>
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The three principles

1. No broadcasting
You can't make two coffes out of one.
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The three principles

1. No broadcasting
You can't make two coffes out of one.

w7 & © -

2. No information without disturbance
You can't have the coffee for free.
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3. No free information

You can't have the coffee for free even if you pay for the lunch.
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The results

<=> non-classical
state spaces

@{ state spaces }

specified in Sec. V

no-free-information —_— state spaces
{ } { specified in Sec. VI J

principle
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GPT refresher

K: state space, compact convex subset of R"
A(K): linear space of affine functions f : K — R
(K)™: cone of positive affine functions, f(x) > 0, Vx € K
E(K): effect algebra of affine functions f : K — [0, 1]
(K)*
(K)

. dual vector space to A(K)
**: positive cone of functionals (¢, f) > 0, Vf € A(K)*
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GPT refresher

K: state space, compact convex subset of R"

A(K): linear space of affine functions f : K — R

A(K)™: cone of positive affine functions, f(x) > 0, Vx € K

E(K): effect algebra of affine functions f : K — [0, 1]
(K)*: dual vector space to A(K)

)’

' positive cone of functionals (p,f) > 0, Vf € A(K)™"

In quantum theory:
K: density matrices over finite dimensional Hilbert space

A(K): self-adjoint operators, A(p) = Tr(pA)

A(K)™: cone of positive semi-definite matrices, A > 0
E(K): set of effects, 0 < A< 1

A(K)*: self-adjoint operators

A(K)**: cone of positive semi-definite matrices, A > 0
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Measurements

QQ: sample space, finite measurable set of outcomes
P(Q): set of probability measures on 2, simplex

Definition
Measurement is an affine map

m: K = P(Q).

Let A C €2, measurable
m(x; A) = measure of the set A with respect to measure m(x)
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Compatibility of measurements

Q1, Q25 sample spaces

Definition

Measurements
my : K = P(84)
my : K = P(8)

are compatible if there exists m : K — P(; x €25,) such that for
all Al C Ql, A> C Q2 and Vx € K

my(x; A1) = m(x; Ar x Q»),
ma(x; A2) = m(x; Q1 x Az).
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Compatibility of measurements
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Compatibility of measurements

Q1, Q25 sample spaces

Definition

Measurements
my : K = P(84)
my : K = P(8)

are compatible if there exists m : K — P(; x €25,) such that for
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Direct convex hull

Definition
Let K5, Kpg be state spaces, then Ky & Kg is a state space of
ordered and weighted pairs of states, i.e.

Ka® Kg ={(Mx,(1=XN)y):x € Ka,y € Kg, ) €][0,1]}.
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No infomation without disturbance

Theorem
There exists nontrivial observable compatible with the identity
channel if and only

2 — *f_ﬂ?:l ;.
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No infomation without disturbance

Theorem
There exists nontrivial observable compatible with the identity

channel if and only

2 — ﬂ??:l Ki-

Proof.

The main idea of the proof is that the measurement has to be

constant on the sets K;.

[]
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No infomation without disturbance

Theorem
There exists nontrivial observable compatible with the identity
channel if and only

2 — ﬂ??:le-
Proof.
The main idea of the proof is that the measurement has to be
constant on the sets K;. (]
Corollary

Let 7 be a coin-toss measurement, then m is compatible with the
identity channel if and only if Am + (1 — \)7 is compatible with
the identity channel for all A € [1,0).
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No infomation without disturbance

Theorem
There exists nontrivial observable compatible with the identity
channel if and only

2 — ﬂ??:le-
Proof.
The main idea of the proof is that the measurement has to be
constant on the sets K;. (]
Corollary

Let 7 be a coin-toss measurement, then m is compatible with the
identity channel if and only if Am + (1 — \)7 is compatible with
the identity channel for all A € [1,0).

Noise does not help!
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Some classification

18120012

Proposition

Let d:m(h’) =0 then K

Proof.
By counting dimensions

Ky

& K5 if and only if K is a triangt
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Some classification

Proposition
Let dim(K) = 2, then K = K1 & K> if and only if K is a triangle.

Proof.

By counting dimensions. []
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Some classification

Proposition
Let dim(K) = 2, then K = K1 & K> if and only if K is a triangle.

Proof.

By counting dimensions. []

]{2

Proposition

Let dim(K) = 3, then

K = K1 & K> if and only if
Ky ={x} and K is
pyramid-shaped.
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Post-processings and convex combinations

Let m1, m> be measurements
my : K = P(1)
my : K — P(£2)
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Post-processings and convex combinations

Let m1, m> be measurements
m: K= P(Ql)
my : K — P(£2)

Definition
Post-processing is a map v : P(€22) — P(£21) that allows us to
construct measurement

mé:uomz:K%”P(Ql)

Post-processing is a form of order that gives rise to an equivalence.
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Post-processings and convex combinations

Let m1, m> be measurements
m: K= P(Ql)
my : K — P(£2)

Definition
Post-processing is a map v : P(€22) — P(£21) that allows us to
construct measurement

mé:uomz:K%”P(Ql)

Post-processing is a form of order that gives rise to an equivalence.
Definition

For A € [0, 1] we define convex combination of measurements as
the map

(Amp + (1= \)mb) : K = P (1)
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Simulability of measurements

Definition
Measurements my, ..., my simulate a measurement m if there are
post-processing 11, ..., Vk
numbers Nz, ..., Az st e [0,1) fori=1,...,k
—k -
>__.-i:1 Air=1
such that
k
rr] = Z /\f’-”" @ n.}’
i=1
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Simulability of measurements

Definition
Measurements myq, ..., my simulate a measurement m if there are

post-processing 11, ..., Pk

numbers A1,..., Ak, s.t. Aj €[0,1] fori=1,...,k,

k =

Z‘le Ai =1

such that "
m = Z /\f’-"'}' O .'Ta',
i=1

Definition

We say that a measurement m is simulation irreducible if it can be
simulated only by post-processing equivalent measurements.
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No free information

Theorem

A measurement m is compatible with every other measurement on

K if and only if it is compatible with every simulation irreducible
measurement on K.
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No free information

Theorem

A measurement m is compatible with every other measurement on

K if and only if it is compatible with every simulation irreducible
measurement on K.

Noise helps! (sometimes)
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Example: measurement compatible with all measurements

S

1.0 +

0.6 4

““- ...............-.-.-.........::a
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Example: measurement compatible with all measurements

Simulation irreducible measure-
ments:

my, =2x ® 941 + (1 — 2X) R dr
My = XK (’S]_ +¥ & (52
+(1—x—y)® I3
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Simulation irreducible measure-
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Example: measurement compatible with all measurements

Simulation irreducible measure-
ments:

my, =2x ® 941 + (1 — 2X) R dr

ms3 =X (’S]_ +¥ & (52
+(1—-x—y)®d3

Measurement compatible with
every other measurement

m=x®94 +(1—x)Rd o

The joint measuremnet el

m’2 =XR01 +XR0d+ (1 —_ X) ® 03
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Thank you for your attention!

Questions?
Comments?
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