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Abstract: <p>The ultra-strong magnetic fields of magnetars have profound implications for their radiative phenomena. We studied the dynamics of
strong magnetic fields inside and outside magnetars. Inside the magnetar, the strong magnetic stress can break the crust and trigger plastic failures.
The interaction between magnetic fields and plastic failuresis studied in two scenarios. 1. Internal Hall waves launched from the core-crust interface
can initiate plastic failures and lead to X-ray outbursts. 2. External Alfven waves produced by giant flares can also initiate crustal plastic failures
which dissipate the waves and give rise to delayed thermal afterglow. The crustal dissipation of Alfven waves is competed by the magnetospheric
dissipation outside the magnetar. Using a high order smulation of Force-Free Electrodynamics (FFE), we found that the magnetospheric dissipation
of Alfven wavesis generally slow and most wave energy will dissipate inside the magnetar.</p>
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Magnetar

- Neutron star with ultra-
strong magnetic field

- Slow rotation period 1-10s

- ~30 sources have been
identified by now

- McGill Online catalogue
list 29 magnetars

- Online interactive analysis: ESA/ATG

http://
magnetars.ice.csic.es
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Magnetar Activities

Giant flares: peak luminosity 1043-1047 erg/s, rises in milliseconds
Soft gamma ray bursts: less energetic ~1013 erg/s

Outbursts: 10-1000 times increase of X-ray luminosity (~1036 erg/

s) and decays exponentially for months to years

Persistent X-ray emission: luminosity usually much larger than
the spin-down power

High surface temperature: 103 erg/s (arXiv:1605.09077)

Timing anomalies: glitches and anti-glitches (sudden spin-down)
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Key Questions

- Thompson & Duncan (1995,1996) proposed that bursts

and giant flares are powered by the magnetic energy and
coined the word “magnetar”.

1) (fast) conversion of magnetic energy to radiations
Magnetic energy is converted to radiations possibly

through a distorted magnetosphere (Parfrey 2013,
Beloborodov 2009,2013).

- 2) origin of magnetospheric distortion
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Outline

Electrodynamics inside the magnetar:

1) Plastic deformation of the magnetar crust by
magnetic stress

2) Modeling magnetar outbursts with Hall waves
iInduced plastic failures (1606.04895)

3) Thermal afterglow of giant flares by crustal damping
of Alfven waves (1505.03465 )

Electrodynamics outside the magnetar:

Magnetospheric dissipation of Alfven waves (1810.10493)
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NS crust

Ocean
(lons with electron gas)

Outer Crust

(Coulomb crystal with electron gas)
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(Neutron rich Coulomb
crystal with neutron gas and
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Plastic Deformation
of the Crust

- The strong magnetic stress is
able trigger the plastic failure
when the magnetic stress
exceeds o, ~ 0.1y

B. =4nc. /B.
cl cr—z crust

- Magnetic energy is dissipated

to heat in the plastic flow

magnetosphere

- The magnetic field lines are
dragged by the plastic flow
and induces footpoint motion
which gives rise to the plastic
toroidal field

crust

crust
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Thermal Responses of the Crust

- The crustal material is softened by the increasing
temperature (Chugunov & Horowitz 2010)

- Ihere is also a phase transition in the plastic flow
(Horowitz & Kadau 2009)
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Thermoplastic Waves (TPW)

Beloborodov & Levin 2014

- Ihe plastic flow dissipates magnetic energy to heat and
diffuses it to the neighboring regions

- The neighboring crustal material is softened by the
temperature increase and more plastic failures can be
triggered

XHB
7

- Ihespeed ot IPWIS v =
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Hall Waves in the Crust

Hall waves: magnetic field advected by the electron fluid

Hall waves generated from the core-crust interface accumulate
magnetic energy inside the crust.

Plastic flow is initiated when the magnetic stress is supercritical.
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Crustal Response

Elastic response: assume stress balance on the slow time
scale of Hall wave propagation

Plastic response: shear magnetic Is reduced by the plasma
viscosity. Set the timescale for the dissipation of magnetic
energy (heating) to be 104s. Crust is healed after some time ~1yr

Thermal response: include magnetic heating, Ohmic heating,
heat diffusion and neutrino cooling

We model non-thermal emission from the untwisting of the
magnetic field lines in the magnetosphere and measure both
thermal and non-thermal fluxes
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Hall-mediated Avalanches vs Thermoplastic Waves
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Hall-mediated Avalanches vs Thermoplastic Waves
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Plastic Damping of Alfven Waves in the Magnetar

Plastic faillures can also be driven
by external waves. e.g. Alfven ; |
waves are generated in the giant L »\.H |
flares (Parfrey 2013). wF it

1000 L e e AR L RS e R RS
L

36 : 25:"
'he wave energy is dissipated and £z o R
— 4\; N,
u ust. )
heat up the crust g
4
- Such crustal heating can give rise o T em—
to thermal afterglow after giant M e

flares. e.g. SGR 1900
Woods et al. (2001)
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Plastic Damping of Alfven Waves in the Magnetar

- Waves trapped along closed
field lines bounce between
magnetic footpoints.

- Part of the wave will be
transmitted into the magnetar
when they hit the stellar surface.

- We run 1D simulation following
the dynamics of Alfven waves
from the magnetosphere into
the crust.

NASA/CXC/M.Weiss
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Temperature Profile and Light Curve
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- |I'he crustal absorption of Alfven waves is competed
by the magnetospheric dissipation outside the
magnetar.

- Thompson & Duncan (1995): dissipation of Alfven
waves forms an optically thick plasma “fireball” that
powers the emission.

- The luminosity of plasma “fireball” emission depends
on how much energy ends up dissipated in the
magnetosphere.
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Magnetospheric Dissipation

How does magnetospheric dissipation take place?
Alfven waves can lose energy througnh
1. Turbulent dissipation from nonlinear interactions

2.Conversion to fast waves that can escape the
magnetosphere

3.Magnetic reconnection”?

4.QED shocks (Heyl and Hernquist 1998)7
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Force-Free Electrodynamics (FFE)

Magnetic energy dominates over the rest mass energy of
the plasma

- Ihe plasma follows the field aynamics with a vanishing
Lorentz force peE+JxB=0,

- The equation implies two force-free conditions

E<B E-B=0
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Waves and Interactions in FFE
- Alfven waves w = |k.|
Fast waves w = | k|

- Three-wave interactions are not possible for

A+A - A F+F—-F

- A+ A - F is avalid channel (Thompson & Blaes 1998)
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Simulation Set-up

- We simulate collision of a pair of counter-propagating
Alfven wave pulses in a periodic Cartesian box.

A
S\

/ NS .
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Numerical Methods

- Very high order scheme: 5th order WENO + Roe solver
Hyperbolic divergence cleaning
E - B is dynamically damped (Parfrey 2017)

2

B . _
E -1/ E- torestore magnetic dominance
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Numerical Dissipation in the Code

1) Hyperbolic divergence cleaning

2) Cleaningof E-B

. . . B3
3) Reduction of electrical field FE — ﬁE

4) Grid-heating

Channel 1 and 2 should converge away with increasing resolution

Channel 4 is expected to capture the true dissipation rate for a
turbulent cascade with constant flux

Channel 3 will be discussed later
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Development of turbulent spectrum in 3D
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Turbulent dissipation rate

& wave amplitude
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Energy Carried Away
by Fast Waves

- Add ohmic dissipation

layer on the boundary of
transverse plane to damp
wave energy which mimics
the energy lost due to the
escape of fast waves

- Alfven waves are confined

on the field lines and can
not reach the dissipative
pboundary

- Only fast waves are

damped

(1.0

20

10 60
t/7 [Number of collisions|

S0

100

Page 41/47



Compared with ~10% transmission rate of Alfven waves
into the magnetar, the magnetospheric dissipation is
weak unless the amplitude is much larger than unity or
wavelength much smaller than the closed field lines.

Most wave energy is lost inside magnetar and power
thermal emission.

The residue wave energy dissipated in the
magnetosphere powers the fireball emission.

The wave energy can be much larger than the observed
radiation since most heat is lost to neutrinos
(Beloborodov & Li 2015).
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Immediate Dissipation in FFE

- All previous simulations are done for Alfven waves have
same polarizations (same direction of B field along a
given field line).

When they are not aligned, nonlinear interaction can
induce E>B and break the force-free condition,

Usually, one reduces E field by hand and assumes this
process simulates the realistic fast dissipation there
(McKinney 2006, Spitkovsky 2000).
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Energy Loss in a Single Collision for 1D Waves
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Comparison with Relativistic MHD
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Conclusion

Inside the magnetar:

Hall-mediated avalanches and TPW are able to reproduce light
curves for outbursts of transient magnetars.

External Alfven waves can also trigger plastic flow and lead to
thermal afterglow.

Outside the magnetar:
Loss of wave energy to turbulent dissipation or fast waves is slow

Most Alfven wave energy Is dissipated inside the magnetar
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Future Direction

How to correctly model the dissipation when E>B in FFE?

Is there magnetic reconnection in those regions?
(ongoing, PIC simulations)

3D simulation of wave interactions with realistic geometry
(ongoing, cubed sphere mesh)

Simulation that couples the crust and the magnetosphere

Connection to FRB, GRB and NS-NS merger (double
magnetar)?
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