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Abstract: <p>Moativated by the problem of defining the entanglement entropy of the graviton, we study the division of the phase space of general
relativity across subregions. Our key requirement is demanding that the separation into subregions is imaginary---i.e., that entangling surfaces are
not physical. This trandates into a certain condition on the symplectic form. We find that gravitational subregions that satisfy this condition are
bounded by surfaces of extremal area. We characterise the ‘centre variables of the phase space of the graviton in such subsystems, which can be
taken to be the conformal class of the induced metric in the boundary, subject to a constraint involving the traceless part of the extrinsic curvature.
We argue that this condition works to discard local deformations of the boundary surface to infinitessmally nearby extremal surfaces, that are
otherwise available for generic codimension-2 extremal surfaces of dimension& nbsp;&%0¥& nbsp;2.</p>
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Why subregions

® |n many situations it is useful to think of a system
as the union of its constituents

® Natural constituents for fields: subregions?

® But, continuum subtleties (test functions)

R
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Reminder of
entanglement

® Entanglement in quantum mechanics: more
information in the whole than in the parts

@ .............. @ Z)\ 1Y1)i @ |12);

e Quantified with, eg, entanglement entropy

=S, Z|,\ 12 log |\
e UV divergences m
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Entanglement and GR

Bombelli, Koul, Lee, Sorkin
Srednicki

In quantum field theory, entanglement entropy
satisfies an area law

A
Sox — +#loge+ ---
€2
Black hole entropy, non-perturbatively in G?

Perturbatively: Geometry + quantum fluctuations

FaB §

ITe.

In AdS/CFT, entanglement considered a crucial
ingredient for emergence of space

SBH — + Sout.
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Black Hole entropy

Bekenstein

Wall

® Black holes evaporate, but entropy increases 0.5 > (

@~

® Solution: add entropy of fields to entropy of
geometry

4 X

iG

® TJotal entropy increases with time

Y Y
S = + Sout
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Entanglement, AdS/CFT

Ryu, Takayanagi
Faulkner, Lewkowycz, Maldacena

® Duality between quantum field theory and
quantum gravity

4
' bEE, bdry — IC, + SEE bulk

0>
Extremal surface

e Quantum error correction, bulk reconstruction
Almheiri, Dong, Harlow

Dong, Harlow, Wall
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Quantum effects on
gravitational entropy

® Quantum corrections to gravitational entropy =
entanglement of the fields across subregions.

4

S =
1G

‘l‘ Sout.

® One of the fields is the graviton
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Gauge Subregions

Casini, Huerta, Rosabal
Donnelly, Freidel

® In a gauge theory, observables are gauge invariant

® Because A;(x) is not gauge invariant, instead of A;(x)

and E'(x), we have Wilson loops and E*(x)

% A ; (;'_I'_.f)(ﬁi:'_lff s F U (;j]j;)
JW

® Wilson loops are extended: some do not factorise

across regions.
Gl
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Algebraic definition

Casini, Huerta, Rosabal

Regions for gauge = Boundary conditions for fields

Position/momentum space:

v [E'(@)]

Y { A;dx ']
JW

Fix gauge potential / electric field on 0%

State decomposes into selection sectors

P = @ PEy PEy

Fa
Entropy tFo)

S = Z pEaSE’o + IIE.:)
{Es}

IIEU - Z ])E.f) 1()g])E.‘;)
{Fa}
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Comments

® Nothing is fixed at the boundary

P = @ PEs PE;

{FEs}

® We drop Ay from the algebra, then FE5 does not
change by action of remaining operators (or vv)

e UV feature,at 0Y . Mutual Info and Relative
Entropy are UV finite and blind to these choices
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Photon ambiguities

 — 0
R

® Choice of algebra affects what you get

® EE of the photon, in the vacuum, across a sphere,

with electric bcs
A 31 R

S(._: _;__]O__{- onne a
] 2 45 & Donnelly,Wall
® With another prescription

A 16 R

~ o /- . /
bl\r[.l. - # TS 10?3 — ... Casini, Huerta
€ 45 €
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Recap Gauge

® Gauge theories describe extended dofs
® What is a subregion!
® Several definitions available

® EE, including ‘universal contributions’, depends on
the definition
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Gravity: preliminaries

® Gravity has no local observables: a point =/ is not
diff-invariant

® Worse than for spin-|
e Generic surfaces X" (o") are not gauge invariant

® Does ‘gravitational region’ make sense in general?
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Symplectic form

® The relevant object is the symplectic form W'
two-form in phase space

W(01¢,020) = =W (020, 019)

® This informs us about the structure of phase
space: space of solutions to the eoms

® Fora ID particle: W =dgAdp
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Symplectic reduction

Lee,Wald
® |t is common to embed the physical phase of a
gauge thy I" in a larger space I" ,eg {A;(x), £/ (x)}

e On a constraint surface C'in I',eg V,E* = 0, the
symplectic form has null directions g

,W].=0

® Can be dispensed via ‘symplectic reduction’ if this
is also a symmetry: L, W|, =0 A

® ( :Fiber bundle over the physical I'
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Comments

® Since closedness is preserved under restriction,
one normally expects trivially

® Failure of ¢ to be hamiltonianon C', I, W # 0H,
would indicate that restriction W], has not been
done properly
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Reduction & Subregions

® Summary: a gauge, non-degree of freedom is such
that it is a null direction and a symmetry of W

® |maginary subregions do not introduce dofs

® |f they had dofs, they would be physical

0%
2

W(glpsy,0) =0
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Symplectic photon

® Symplectic form

IIY((Sl., 52) = / d°x 01 A; JQEN — (l <> 2)

by

LY

® For a gauge transformation VA = de
Wi, o) = / d’xedE+
Jos:

® Choices
SEL =0

&)
|
-
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Comments
O@@E Wi(e,d) = / d*zedE+

® Magnetic choice:

64'|(JE =0 E |-

® Electric choice:

SE*| . =0

“d

® ¢ isalways a symmetry of W (because §° = ()

)
H. = / d’re B+
J O
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Symplectic graviton
Jafferis, Lewkowycz, M:lljacena, Suh

® Symplectic form on a diffeomorphism

Wi(g; 09, £:9) = / 0Q¢(g9) — icf(g;dg)

/ Jon

. [Boundary]
2/ Metric \; Noether Bdry term
_ variation charge action
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Notation

C s )
A GER> )

— Y

ds? = —(da®)? + (dx')? + (hij + 2Kj02®) dy'dy’ + - -

Induced metric Extrinsic curvature
20) _
hij = =" deth =1
1 2Q 7~ hIK .. — ()
Ix'iju, — mfkuhij + e I\'i_ju Iy q9a —
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Types of non-trivial diffs

_' Ham Null

¢ .

® Boundary diffs m Y [0hy; =0
® Boosts C\O ¢ (7 Y |JA=0
® Translations ;‘C\Q m m

G

r N n 1 . 2 ~b _a Sr1”
: J O -

D-3 1 =i 57 |
+2 ( o0t 5K Y, éhu) ¢"e "h]
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Graviton bdry conds.

— ——— (€% 0( K, €,
167 /o (e 0 (Ko €n)

[_-'l--’(g; dq, fc«*« ,(J) - D -2

+2 (g : Z(SKU + %R” o M_m ) ¢ bty e h]
® Most natural:fix K =0 and KV (;,,(S}_z.:.,;.j =0
e Superselection sectors available when K“ = 0
® Superselection sectors labelled by ¢/, such that
KY, (SFL,‘,J' =0

® Examples: Biff surfaces, Ryu-Takayanagi surfaces
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Intepretation of BCs
pPe = @ Psh;; Psh,;

{fsh,jl}' |I{'i-j€1' (Sh,} :0}
K% =10 isagood subregion: It is diff-invariant

K" ,8hi; = 0 discards &h,; achievable by a
displacement (gauge transformation):

oh ij = 2K ija C “
Locally deformable extremal surfaces?

Jacobi fields?
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Cartoon

Ohij # KijaC*

N\

{ (Sh-,gj = 01 K = 0}

=
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Deformability of 03.

® Claim: Generically, there may be nearby extremal
surfaces reachable with local translations

® Jacobi equation
_D‘ZC(L + "”;u‘bcb — 0
® When

ra ” A7) A~ 2 ca ~a . Qa 79 |,
% Ub = —f&.ijafk Ub ~ — K¢ ab [C, = C J(_) (\/ K? |y|)]
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Recap: Graviton

Principle: Subregions are imaginary separations: Do
not introduce degrees of freedom to the system.

Symplectic reduction: diffs of subregions should
annihilate and be symmetries of W . Non-trivial.

Boundaries of subregions are extremal surfaces.

Superselection sectors labeled by h,;; on 93, such
that K7 ,0h;; = 0.This discards dh;; = K;;4,(°,
that take us to nearby extremal surfaces.
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Outlook: (i) AdS/CFT

® Quantitative quantum corrections to RT:

e

141G
® Consequences of deformability of RT surfaces?

&, &
*-SEE, bdry — + ’*SEE, bulk
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Outlook: (i) AdS/CFT

® Quantitative quantum corrections to RT:

e

141G
® Consequences of deformability of RT surfaces?

&, &
*-SEE, bdry — + ’*SEE, bulk

® Fuzzy bulk reconstruction?
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(i) Black Hole entropy

® With Euclidean methods, quantum corrections to
BH entropy can be accounted for precisely for
extremal BHs in string theory.

® Mismatch for Schwarzschild black hole:

- A N 77 log A .
o 4G 90 T 4G
e And LQG
Stqc = o —log 2 + -
TAG 4G

® Real-time entanglement-across-horizon picture?
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Summary

Regions are subtle with gauge symm
Important for, eg, Q corrections to BH entropy

The phase space of a gravitational subregion is
gauge invariant if the boundary is extremal surface

Extremal surfaces are locally deformable!?
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