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Abstract: <p>A sdlf-correcting guantum memory can store and protect quantum information for atime that increases without bound with the system
size, without the need for active error correction. We demonstrate that symmetry can lead to self-correction in 3D spin lattice models. In particular,
we investigate codes given by 2D symmetry-enriched topological (SET) phases that appear naturally on the boundary of 3D symmetry-protected
topological (SPT) phases. We find that while conventional onsite symmetries are not sufficient to allow for self-correction in commuting
Hamiltonian models of this form, a generalized type of symmetry known as a 1-form symmetry is enough to guarantee self-correction. We illustrate
this fact with the 3D “cluster state’ model from the theory of quantum computing. This model is a self-correcting memory, where information is
encoded in a 2D SET ordered phase on the boundary that is protected by the thermally stable SPT ordering of the bulk. We aso investigate the
gauge color code in this context. Finally, noting that a 1-form symmetry is a very strong constraint, we argue that topologically ordered systems can

possess emergent 1-form symmetries, i.e., models where the symmetry appears naturally, without needing to be enforced externally.& nbsp;Joint
work with Stephen Bartlett.</p>
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Motivation

How can we protect quantum information in a noisy environment?
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Motivation

How can we protect quantum information in a noisy environment?

Quantum error-correcting codes...
using topological phases of matter.

Error-correction is expensive
How long can we store quantum information without intervention or
active error correction?

Self-correcting quantum memories
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Self correction, symmetry, and topological phases at
I #0

This talk
Self-correcting
gquantum memories

1. Self-correcting quantum memories
2. Symmetry as a mechanism for self correction
o Symmetry-protected topological phases for quantum memories
e Simple examples demonstrating self-correction
3. Relationship between self-correction and topological order at nonzero
temperature
4. Avenues to symmetry
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The (Caltech) rules for self correction

1. Finite density of spins in R?

v

Local Hamiltonian H = . h; with bounded strength
terms || h;|| <1

Degenerate ground space (in thermodynamic limit),
perturbatively stable

Coupled to a thermal bath, the lifetime 7 of encoded
information diverges (exponentially) with the system
size

Efficient classical decoder

BTN e, ErRa i,
[)O N ﬂ(r) s trB (e I 2ia S.JQQB.Jt[)Oe’ 2 -SAJQ_OB.:?)

—_

e (p(t)) =c po
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The energy barrier

e Energy barrier: The minimal energy cost accrued to implement a logical
operator through local operations

> 5 Arrhenius Law

[<T0] 5 -

by / : for memory time

= A

= = ™~ exp(48)
0) 1)

o If Ag grows with N: the bigger the system, the more quantum it
becomes

o Necessary for stabilizer Hamiltonians (Temme 14, Temme &
Kastoryano 15), 2D quantum doubles (Komar et al. 16)

e Can a macroscopic energy barrier exist in a 3D model?
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Dimension game and the energy barrier

Energy barrier Memory time

2D toric code O(1) 0(1) = e*
3D toric code O(1) 0(1) = e’
4D toric code O(L) exp(L)

The 2D toric code

o Excitations appear at the end of error strings

® o ® ‘ '\. r._’

o Rapidly approaches a uniform excitation density ~ e”?

o Excitations need only walk distance O(1) to cause an error

o With active error correction can achieve 7 ~ exp(L)
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Dimension game and the energy barrier

Energy barrier  Memory time

2D toric code O(1) O(1) = e
3D toric code O(1) O(1) = e°F
4D toric code O(L) exp(/SL)

The 3D toric code

e Loop and membrane logical operators
e Point-like and loop like excitations

o Point-like sector (loop logical) thermalizes quickly

» Loop excitations are suppressed — can store a classical bit
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Dimension game and the energy barrier

Energy barrier Memory time

2D toric code O(1) 0(1) = e
3D toric code O(1) 0(1) = ef
4D toric code O(L) exp(/L)

The 4D toric code

Both logical operators are two-dimensional

Errors cost energy according to their boundary size

Large loop excitations are suppressed by the Boltzmann factor

A self-correcting quantum memory! (Dennis et al. 02, Alicki et al. 10)

Pirsa: 18110089 Page 10/37



Dimension game and the energy barrier

Energy barrier Memory time

2D toric code 0O(1) O(1) = e
3D toric code O(1) O(1) = e
4D toric code O(L) exp(L)

Can self-correcting quantum memories exist in three spatial dimensions
or less?
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Interesting proposals in 3D

Long range interacting anyons

Fractal product codes

Hamma et al. 09, Chesi et al. 10,
Pedrocchi et al. 13

interacting toric code scalar field
ir S ite =t
H = Z Voo hy© hy +g<qaaaq
p.p’ q
Fractal models
Haah 11
X
T /]
° L I
i, g
Jele &6 o
| LY 6

Brell 2016

A
B - FHEE

Welded codes
Michnicki, 2014

R
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No-go theorems

Necessity of energy barrier

2D models

e Stabilizer Hamiltonians (Temme 14,

Temme & Kastoryano 15) e 2D stabilizer codes Ag = O(1) (Bravyi &

Terhal 09, Kay & Kolbeck 08, Haah &
e 2D quantum doubles (Komar et al. 16). Preskill 12)

N S OPIC BRotuCTa; e 2D commuting projectors Ag = O(1)

(Landon-Cardinal & Poulin 12)

Instability of topological order

3D models

e Decay of topological entanglement entropy
in 2D and 3D toric code (Castelnovo & o Stabilizer models with translational and
Chamon 07,11) scale invariance Ag = O(1) (Yoshida 11)
* 2D commuting projectors Gibbs triviality e Stabilizer models with non-Clifford gate
(Hastings 11) Ag = O(1) (Pastawski & Yoshida 15)

» Translationally invariant stabilizers
Ap < O(log(L)) (Haah 13)
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New direction: symmetries

This talk
Self-correcting
qguantum memories

e Two related insights:
1. The presence of symmetry can lead to new phases of matter

(/) Symmetry-enriched topological phases
(/1) Symmetry-protected topological phases

some are stable at nonzero temperature in 3D
2. Symmetry gives constraints on local noise (in definition of energy
barrier)

Pirsa: 18110089 Page 14/37



New direction: topological phases with symmetry

Two types of topological phases with symmetry S(g),g € G.

Symmetry-protected

e Bulk is short-range entangled, non-degenerate
e No anyonic excitations in the bulk
e Bulk boundary correspondence: boundaries support ‘protected modes'’

o New exotic phases obtained by gauging the symmetry (later)

Symmetry enriched

e Long range entanglement
e Anyonic excitations that may transform under the symmetry
o Symmetries lead to interesting defects

e Some SETs only realisable on the boundary of higher dim SPTs
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New direction: Topological phases with symmetry

e Natural candidates for the following reasons:

1. Bulk is confining (absence of anyons)
2. The boundary theory must either

(i) break the symmetry
(i) be gapless
(/i) be topological ordered

Goal: Characterize feasibility of symmetry-protected topological
phases as self-correcting quantum memories.

Thermal topological order <= self-correction
Weakest possible symmetry

A bulk boundary correspondence at T > 0

Pirsa: 18110089 Page 16/37



The framework

e Hamiltonian: Topological ordered models on
the boundary of 3D SPT phases —
e Symmetry: S(g),g € G (given) 5 / : x
: : d
e Noise model: local noise respecting symmetry 2 _— —_—
o Lifetime: Determined by the symmetric energy )(\ \
barrier 0 1)
/'
// [€noise: S(9)] =0 i 27
3D 2D
SP SET
phase phase

_____________________________________
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First observations: the onsite symmetry case
¢ Onsite symmetries are most commonly considered

S(g) = Qiui(g), ui(g) |gi) — |ggi)

* L L ® * *
] * * ® * *
* L 3 L 3 L L 2 *
* L 2 L 2 L2 L 2 *
¢ L 2 * L 4 * *
[ ] L L 2 ® L 2 L ]
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First observations: the onsite symmetry case
¢ Onsite symmetries are most commonly considered

S(g) = Qiui(g), ui(g) |gi) — |ggi)

u(g) ‘ ‘ u(a) ‘ u(y)

IH(U] | ’ “('J}I IN(H)I
u(g) | \ u(yg) ‘ u(q)
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First observations: the onsite symmetry case
¢ Onsite symmetries are most commonly considered

S(g) = Qiui(g), ui(g) |gi) — |ggi)

L 2 * L 4 L . *
(o) uto) » Boundary degrees of freedom
—t— transform ‘anomalously’
. * * L4 . * J : 1
u(g) u(g) Sa(a) Sp(g) T N(g)R(g)
* * * * = g L]
Lol L [ N e R(g) onsite, N(g) local circuit
ota ulo) diagonal in |g;) basis
* L - L L ] [ ]

e Dimension reduction: look at 2D boundary separately with anomalous
symmetry

e 2D boundary unstable: string-like operators free to propagate
o Symmetric energy barrier = O(1)

[ Memory time 7 = O(1) for onsite symmetry-protected memories. ]
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First observations: the onsite symmetry case

e Can SPT order survive at nonzero temperature?

e Thermal nontriviality: The Gibbs state is “not a classical state”:

p is trivial if a spin K; can be added at each site /, and a symmetric local
unitary U can be found such that

p = trk(Upq UT), Pa ~ exp(—BHq)

[ No thermal SPT with on-site global symmetry ]

Proof Sketch:

1. Construct approximate thermal state by removing
terms from Hamiltonian T

2. Missing terms act as sinks, where point-like
excitations can be created/destroyed

3. Dividing the lattice into a grid, the sinks can be 4I® ‘ |
used to construct a symmetric disentangler l I

SR, Yoshida, Kubica, Bartlett 17
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Beyond onsite symmetries

e Onsite symmetric models:

1. Not topologically ordered (circuit depth) at any T>0
2. Not self-correcting

e Look toward subsystem symmetries, which generalize the onsite case

o el
. e
o higher-form (deformable)

Sm(g) = = 1_[ ui(g)

k-form: M closed codimension-k submanifold

Kapustin and Thorngren (2013)
Kapustin and Seiberg (2014)

Giaotto, Kapustin, Seiberg, and
S Willett (2015)
e Note: O-form = onsite case Yoshida (2015)
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A first example of a symmetry-protected self-correcting
quantum memory

1. Bulk Hamiltonian: Raussendorf, Bravyi, Harrington (RBH) cluster state
2. Boundary Hamiltonian: dressed toric code

3. Symmetry: Z3 1-form symmetry

_____________________________________

Pirsa: 18110089 Page 23/37



Constructing the model (bulk)

e Bulk cubic lattice L4
: o o e
» Qubits on edges and ] ‘
(Z [
e Hamiltonian Hyuik = 3., K; L » s [ »
& 2o
e Ground state = cluster state (7$ i (xX) ‘/ }
| =
Z ® ; ! ‘
V | -7 4
5

Ly X Zp 1-form symmetry operators

Sm(g) = HX,- M a 2-dim closed surface
eM
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Constructing the model (bulk)

» Bulk cubic lattice o [ = [ ot
o Qubits on edges and W TR T oF T T
e Hamiltonian Hyyk = ), Ki e
» Ground state = cluster state ;,\-'A_ "‘\‘ T a@ERET |
Z-X-Z sz et iSEEE S

Z :l.\' xll

Ly X Zp 1-form symmetry operators

Sm(g) = HX,- M a 2-dim closed surface
eM
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Constructing the model (boundary)

e Construct a toric code out of

boundary operators ® ® ®
s < VA
Ho=—-Y A, - B % i E
e e
v f o o ©
Z &2 Z
_‘\-. | ‘\\‘ | (\.
e String logical operators ® ¢ ¢
(single logical qubit with Z

planar boundary conditions)

e Boundary modes

X h = X J /\ 7 Z b — JI/J 4 /
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What excitations can be introduced?

o Bulk excitations: flipped cluster terms from chains of Z operators
{K,‘,Z,‘} — 0, [K,,ZJ] = [ Vi 7L_I

e Symmetric <= closed loop
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What excitations can be introduced?

[ Boundary anyons can exist only at the end of bulk string excitations ]
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Energy barrier

Bulk SPT ”

e Tension between anyons introduced by bulk string excitations.

o Local symmetric error channels that drag anyons apart have an energy
that grows with their separation

e Energy barrier grows with the code distance. Ag = O(L)

Lifetime of symmetry-protected quantum memory 7 = O(exp(L))
below a critical temperature T..
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Thermal nontriviality

e Bulk retains SPT order up to a critical temperature

p#* UpqU', forany pg ~ exp(—BHy), U sym local unitary

e Many ways to prove this
1. Error corrected non-local order parameters

2. Gauging to produce a nontrivial domain wall in the 4D toric code
3. Symmetric energy barrier is a topological invariant

Non-constant energy barrier == nontrivial SPT order

1D Torie code 1D Torle cods

) =|— = ()2

& Unfold
1D Trivial
e ) =5 —-»If J ity

AD RBH

SR, Yoshida, Kubica, Bartlett 17
e Can we obtain the same result using a 1-form symmetric trivial phase
(H = =2, X;) for the bulk?
e No! Bulk SPT order is required to couple bulk and boundary systems
e Bulk boundary correspondence at nonzero temperature
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Other Symmetry Protected SCQMs

o Gauge fixed version of the gauge color code Hf = — >, o(Xr + Zr)

~fecB /

e Modular Walker Wang enriched by symmetries
- l

-
-

o Foliated stabilizer codes (a simpler subclass of WW models)
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Emergent symmetries

Can the Zy x Z, 1-form symmetry emerge from underlying physics

e Hint 1: Emergent local Z, symmetry in the toric code
e What is the symmetry operator that detects this?
e Kitaev: we can find a symmetry if we introduce redundant qubits

gauge LU

Zo paramagnet ——> 7, gauge theory ——— toric code
ungauge LU

g A > ? ® O e 0 e 0 e 0 e O o o ° .
L ] L ] L ] L ] L ] L ] L ] L ] L ]

L4 4 © 2 4 © C e O e O e & e O L 3 - L ] L ]
L ] L ] ] L ] L ] L ] L ] L ] L ]

] o o L ® C e O e O e & e O L ] L ] 2 2
L ] L ] L ] ] ] L ] L ] L ] L ] .

¢ © @ © ® P9 —G¢ oG9 * * L 2 L 2
L ] ] L ] ] ] [ ] [ ] L ] [ ] L ]

® © © © ® O e O e ¢ e ¢ e O [ [ [ .

Zy symmetry | [, X, Valid states X, A, = +1 Emergent Z,

e Models with enforced symmetries can be dual to models with emergent
symmetries: artificial symmetry becomes real
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Emergent symmetries

e Gauging can be performed on subsystem and higher-form symmetries too
(e.g. Vijay, Haah, & Fu 16, Williamson 16, Yoshida 16)

o One can gauge (several copies) of RBH with 1-form symmetries to a
particular gauge color code Hamiltonian (Kubica & Yoshida 18)
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Emergent symmetries
e Gauging can be performed on subsystem and higher-form symmetries too
(e.g. Vijay, Haah, & Fu 16, Williamson 16, Yoshida 16)

o One can gauge (several copies) of RBH with 1-form symmetries to a
particular gauge color code Hamiltonian (Kubica & Yoshida 18)

e Evidence in favour of gauge color code stability?

Bombin 2016

H = —,\;J(XwaZf)
f

e Product constraints == loop excitations, bulk and boundary coupled

e Does the gauge color code enforce a 1-form symmetry on its own
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Emergent symmetries (a second hint)

e Prethermalisation and approximate conservation laws in closed systems

e Some closed quantum systems have an exponentially slow approach to
thermal equilibrium
o Obstructions to the equilibration of degrees of freedom encoded in

edges or defects (Else et al. 17)
e What is the underlying symmetry?

Theorem (Abanin, De Roeck, Huveneers and Ho 15)

H = S Px +Y (commuting proj. + small pert.)
X

there exists local unitary U such that

.
UHU _;PX+D+E

where [, Px, D] = 0 and ||E|| = O(e™ ")

* > x Px is conserved for a time e~ “"* == approximate U(1) symmetry
e Can we find higher-form analogues?
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Summary

Topological order T>0 Self-correction

SPT with onsite

Trivial with 1-form X

SPT with 1-form

2D comm uting pl’Oj. X Hastings 11 X Landon-Cardinal & Poulin 12

3D fractal X Siva & Yoshida 17 X Bravyi & Haah 13

4D toric Hastings 11 Alicki et al. 10

[ Find dualities relating RBH to other models ]
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Questions

e Higher-form symmetries arppear necessary for stability in 3D commuting
models. Can they emerge more naturally in e.g. subsystem codes?

e Find more solvable models of the gauge color code
(ongoing work with Tomas Jochym-O'Connor - ask me later!)

e 2D SET boundaries of 3D SPT correspond to topological defects in 4D
(thermally stable?)

e Understand symmetry-first principles for single-shot error correction and
connection to thermal SPT order

o Dualities with subsystem codes (gauging/ungauging relates emergent and
enforced symmetries) e.g. Kubica and Yoshida 18

» Understanding closed system and open system thermalisation results
(prethermalisation, localisation, approximate U(1) conservation laws...)

e Other notions of thermal topological order
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