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Abstract: <p>The strong interaction of quarks and gluons is described theoretically within the framework of Quantum Chromodynamics (QCD).
The most promising way to evaluate QCD for all energy ranges is to formulate the theory on a 4-dimensional Euclidean space-time grid, which
allows for numerical simulations on state of the art supercomputers. We will review the status of lattice QCD calculations providing examples such
as the hadron spectrum and the inner structure of nucleons. We will then point to problems that cannot be solved by conventional Monte Carlo
simulation techniques, i.e. non-zero baryon density, the matter-antimatter asymmetry and real time smulations. It will be demonstrated at the
example of the 1+1 dimensional Schwinger model that tensor network techniques are able to overcome these problems showing that with this
approach --and eventual quantum simulations-- a path for solving QCD is opening up.</p>
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The Quest for Solving Quantum Chromodynamics:
status and challenges

Karl Jansen

_ine)
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e Status and difficulties of present lattice QCD calculations
» Hamiltonian approach to lattice gauge theory
e Matrix product states

- Spectrum
— Chemical potential

* A glimpse at quantum computing
e Conclusion
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Quarks are the fundamental constituents of nuclear matter

¢ itx = 075 Forthachmes of & thesy i§ practic.
Ater Frsamgn wod ¥andad 1972

Friedman and Kendall, 1972)

/{l ()_ ) =0 2_.,1.(2;‘ - 10GeV Independent Of (‘-')—

(z momentum of quarks, ()° momentum transfer)

Interpretation (Feynman): scattering on single quarks in a hadron
» (Bjorken) scaling
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Quantum Fluctuations and the Quark Picture

analysis in perturbation theory
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Why we need lattice QCD

e situation becomes
incredibly complicated

e value of the coupling
(expansion parameter)
Citsoiat 110 ) 25 ]

- need different (“exact”) method

> has to be non-perturbative
» more than all Feynman graphs

e Wilson's Proposal: Lattice Quantum Chromodynamics
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Lattice Gauge Theory had to be invented

» QuantumChromoDynamics

1

asymptotic
freedom

confinement

distances << 1fm distances =~ 1fm

o~/

world of quarks world of hadrons
and gluons and glue balls

perturbative non-perturbative
description methods

Unfortunately, it is not known yet whether the quarks in quantum chromodynamics
actually form the required bound states. To establish whether these bound states
exist one must solve a strong coupling problem and present methods for solving
field theories don't work for strong coupling.

Wilson, Cargese Lecture notes 1976
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Schwinger model: 2-dimensional Quantum Electrodynamics

{S(:h\_‘-‘ﬂn;’)f‘fr 1962)

Quantization via Feynman path integral (in Euclidean time)

Z = [ DA, DYD Ve~ sauge™Sferm
Fermion action

Sterm = [ d*xV(z) [D,, + m] ¥(z)
gauge covriant derivative

D, ¥(x) = (9 — igoAu(x))¥(x)

with A, gauge potential, g, bare coupling

*S'f.:.nn:n- . ’ (/2-!-1‘}rrf[‘}11/ y [‘}”,(.!') - (')J“;l,,(.l'} o ('),/;l‘,(.l'}

equations of motion: obtain classical Maxwell equations
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Schwinger model: properties

confinement of charges
bound states

chiral symmetry breaking
super-renormalizable

exactly solvable in massless case
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Lattice Schwinger model

introduce a 2-dimensional lattice with
lattice spacing «

fields (), W(x) on the lattice sites

r = (f,x) integers

discretized fermion action

S—a*y ¥ [v.0

LT H

'_’LTA s

H ]

discrete derivatives

T) = ll—f‘\li{.r + ajt) — V(x)| , TL‘I’{.!'J = ‘I—PE‘I}[.J‘} — W(x — aj)|

second order derivative — remove doubler - break chiral symmetry
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Implementing gauge invariance

Wilson's fundamental observation: introduce parallel transporter connecting the
points x and y = x + aji :

1

Uz, u) = e € U(1)

= lattice derivative: V,¥(x) = ‘l—ri['[.r.;f)\llt.r + p) — ¥(x)]

U, =Ul(z,u)U(z + p,v)UN(z + v, p)l Tz, V)

Pl ix) ion a=»4

H

: { J| J;‘_. ) '_I R(‘({'I-,_t,,])_.' - 3l V) HT;TI,}; f}l

partition functions (path integral) with Boltzmann weight (action) S

o G " .""
= .‘ta.-m,‘
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Physical Observables

expectation value of physical observables O

v P ¢ G
<~ Jhelds

- g
T

lattice discretization
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From the Schwinger model to quantum chromodynamics

system becomes 4-dimensional:
(50 - 50] — [50 - 50] - 2500
| J | d

gauge field U(z,p) €e U(1) = U(x,pn) € SU(3)

quarks receive 4 Dirac and 3 color components:
50 - 50] — [50 - 50] - 30000

Schwinger model simulation O(1day)
QCD: —» need massive parallelization

theory needs non-perturbative renormalization
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The graph that wrote history: the “Berlin Wall”

see panel discussion in Lattice2001, Berlin, 2001

1000 L’llllllglll;lli.ltlllh with L=2fm fOrn1u|a (' % (iﬂl)

| Ukawa ( 2001 3] Hl’,,

“both a 10% increase in computing power
AND spectacular algorithmic advances
before a useful interaction with
experiments starts taking place.”

04 _ 06 : (Wilson, 1989)

m | m,,

= need of Exaflops Computers

physical contact to
point xPFt?)
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A generic improvement for Wilson type fermions

New variants of HMC algorithm

(here (Urbach, Shindler, Wenger, K.J.), see also RHMC, SAP)
1

e even/odd preconditioning

o (twisted) mass-shift (Hasenbusch trick)

e multiple time steps

1000 configurations with L=2fm
Ukaws (2001 ]

- . T
Fl THops - vears Urbach et al
- Orth et al

tm @ 3

} b=

| |
LA &

mps [y,

2006
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German Supercomputer Infrastructure

e JUQUEEN (IBM BG/Q)
at Supercompter center Julich
5 Petaflops — 12 Petaflops (JUWEL)

e HLRN (Hannover-Berlin)

Gottfried and Konrad
(CRAY XC30)
2.6 Petaflops

e Leibniz Supercomputer center Munich
combined IBM/Intel system SuperMUC
3 Petaflops
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The lattice QCD benchmark calculation: the spectrum

spectrum for Ny =2+ 1 and 2 + 1 + 1 flavours

2.2

2000 ETMC Ni=2+1+1
BMW

2| PACS

Lﬂu!mt-’s‘.}mmﬂn—‘h‘upmﬁa\ m\ummJnJ

-+Q

" LHPC
aha T [

=]

15004

1000+

- gxpenment
= width
o Input

§ QCD

" = A & =2 3

first spectrum calculation BMW repeated by other collaborations
(ETMC: C. Alexandrou, M. Constantinou,
V. Drach, G. Koutsou, K.J.)

e spectrum for Ny =2, Ny=2+4+1and Ny =2+1+ 1 flavours
» no flavour effects for light baryon spectrum
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Even isospin and electromagnetic mass splitting

(BMW collaboration)

BMWe preliminary

_7J —

\ \\ \ I \
aM Al aM aM

baryon spectrum with mass splitting

e nucleon: isospin and electromagnetic effects with opposite signs

e nevertheless physical splitting reproduced
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There are dangerous lattice animals
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Markov Chain Monte Carlo (MCMC) Method

(O) = [ DriciasOe™ >/ [ Drieidst

1 S[x,. x,] is complex
R e hn(S{xT‘ X5] )
e needs real and positive probability

density measure Dy, s

e complex action not accessible to
standard MCMC

— chemical potential ip\VW
N (}Aterm ‘,7(}\, ‘HUIJ(\ /:‘/H” [“;J(\
(CP violation)

e constant error J(1) as
function of sample size N

"™ w-.p:tmﬁmw
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Understanding QCD phase diagram

e only zero baryon density accessible

1
» understanding of phase transitions?

Pirsa: 18110088

— early universe
— heavy ion experiments
exotic regions of PD

e do not understand origin

of todays universe
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Real time evolution

only thermal equilibrium accessible

i
» no real time simulation

understand real time processes in heavy ion collisions
— complicated sequence of transitions

standard way: linearize equations
plus small fluctuations

do we really understand
the involved transitions?

Pirsa: 18110088 Page 21/41



CP violation

e in nature, we observe violation of
charge and parity; symmetry

induces difference between
particles and anti-particles
asymmetry of matter and anti-matter
allows that there are :

) pin-Up Spm=Down
more baryons than anti-baryons Electron Positron

e leads to our sheer existence
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CP violation from strong interaction?

CP-violation can originate from
electroweak and strong sector of standard model

do not understand amount of CP violation observed
estimtated matter anti-matter asymmetry: 7 = O(10~ )
electroweak interaction: 1 = O(10~*%)

invariant under CP

Lagrangian of strong interaction LOST PROPERTY
IQ& LS S
- complex “theta”-term: ife,,, .5 F .. F,s . ;.

can it explain the missing CP violation?
(and therefore the matter anti-matter asymmetry) —mmmr—

*Sorry Doc, we hed ¢ lead of Anti-
Matter around 13 billien years age

MCMC unable to answer this question but it got lost when we meved

Pirsa: 18110088 Page 23/41



A solution to the sign problem: The Hamiltonian

e Hamiltonian approach has been much discussed in early stage of
lattice field theory (Kogut and Susskind, Wilson, Luscher, ...)
Hamiltonian / spin-1/2 system

wavefunction |V >

N (‘,l,,k,,._,\|¢"[llg'"/\' >
C'i\in, iy coefficient matrix with 2N entries BB "\- -

; : .
= becomes impossible ... very fast

A
L} r 'm

= no practical solution to sign problem

e =~ 1980 Creutz performs Markov Chain Monte Carlo
» start of success story
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Relevant part of Hilbert space is very small

We want too much

consider system with mass gap A(L) — assume FSE polynomially in 1/L

local density operator, e.g. p, = ®/®,
If H/)t-_\;u't f};lm::n,\-H < )
then the wavefunction

H“Dl‘_\,u[ = i‘kq,}.;u_\ > H <—\ AIIJ;,I

e sufficient accuracy of local properties
provides accurate

description of global properties

e 0 scales polynomially
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Relevant part of Hilbert space is very small

o (surface) area law:
the entanglement; between a subsystem and the rest
grows with the boundary of the subsystem (area in 3 dimensions)

e entanglement entropy in one diemsion:

mass gap 1/&: S « log(&)
critical system of size L: S  log(L)
exponential improvement
compared to S x L
e for dimension d > 1: S oc L4} F e
- area law

e how can we use this property?
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Matrix product states
(S. White, M. Hastings, |. Cirac, G. Vidal (+his group),

A particular ansatz: matrix product state
1

d
E TrAYAZ - AV |iyig - - -4
1,22, f\'_l

e A, is D& D matrix — D bond dimension

e i; physical index (e.g. spin +1/2 for d = 2)
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Bond dimension for ground state

approximation of ground state |W > with accuracy ¢,/L

1

minimal bond dimension D,,;, to reach ¢,/ L

[“)[uin 2 const. L

€0

= D scales polynomially

Hasting's theorem: for a gapped system
there is an exponential fast convergence
in the bond dimension D

(at least for ground state properties)

Many-body Hilbert space

1d Arealaw states

controlled and fast convergence to solution
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Schwinger model Hamiltonian
e 1 + 1(space+time) dimensional
Hamiltonian formuldtion: H = 7+ A, — L, 5 i Fox
H=—iVol(0, —igA;)¥ + mPW¥ + %E"
E: electric field, o,: Pauli matrices
Gauss-law: 0, E = qWo WV | ¢ coupling

Kogut-Susskind (staggered fermion) formulation

. ] { ri'z 2
H=-+5 (¢!e"p,i1 —hc.)+m Z”(—l]”('llrﬁ,, + LN ¢

2g &~ D LM n?
¢, single component fermion field
0, = iaAy(n) gauge variables

L, = gF,, electric field (conjugate variable, |¢,,, L,,| = i,, ., )
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discretizing and reformulation in a spin language

N=-2r1 It + 1 N 1 g / =1 N-2 2
H=g>_ s loda . .;+o 0 1+%Y "1+ (~1)"eZ]+ ) (L, + a)

n+1] 2 Lun= nl Lan=0 L

|

53
gca*

Gauss-law: L, — L,_; = 1[0Z + (-1)"]

2Lt N

= eliminate gauge degrees of freedom — pure spin formulation

e perfect formulation for matrix product states

e accessible for quantum simulators
(C. Muschik, M. Heyl, E. Martinez, T. Monz, P. Schindler,
B. Vogell, M. Dalmonte, P. Hauke, R. Blatt, P. Zoller, New J.Phys. 19 (2017) no.10, 103020)
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Calculating the mass spectrum in the Schwinger model
(M.C. Banuls, K. Cichy, |. Cirac, K.J.)

reach values of r = 600 — MC-MC: = =~ 20

. Vector binding energy
m/qg | MPS with OBC | DMRG result exact

0 0.56421(9) 0.5642(2) 0.5641895
0.125 0.53953(5) 0.53950(7) -
0.25 0.51922(5) 0.51918(5) -
0.5 0.48749(3) 0.48747(2) E

vector case: agreement with and comparable accuracy to DMRG

Scalar binding energy

‘m/g | MPS with OBC | SCE result | exact
0 1.1279(12) 1.11(3) | 1.12838

0.125 | 1.2155(28) 1.22(2) :
025 | 1.2239(22) 1.24(3) .
0.5 1.1998(17) 1.20(3) :

scalar case: accurate determination of energy

MPS approach works for gauge theories!
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The CP(N-1) model

continuum action

v 5 ¥, p
S = 45 [dz?9,nd,n

-y |

1

n N-component vector, n® = |

1 coupling

asymptotic freedom
non-perturbative generated mass scale
topological properties

can be coupled to chemical potential
= not accessible to standard Markov chain Monte Carlo
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Results for the special case of O(3) model
(Falk Bruckmann, Stefan Kihn, K.J.)

e |attice Hamiltonian
1 N 2 N z N
H'= 553 k1L —ap 3 j—q Li — B X k=1 ki1

e perform matrix product state calculation

v

Ox

mass gap
am = 128n 3 exp (—2n3) — log(/3) + const.

.
2.0140 £ 0.1183
2.0423 1 0.1428
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Coupling a chemical potential: the phase structure

aH = u;a(g) FaW

energy in charge sector q
1

aEoq(p) = —pqg+ Eo(Wlg)

= changing ¢ <> intersection of energy Ey(W|,)

e find first order jumps
» explore phase structure at non-zero chemical potential
» MPS solves sign problem
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Phase structure in the Schwinger model at non-zero density
(M.C. Banuls, K. Cichy, I. Cirac, S. Kuhn, H. Saito, K.J.)

e no analytical solution available

e prediction of pha:i‘.e diagram in ;¢ — m plane

ML B s

10
8
SF =6
44

5

O~

S L L 4

TR PEEEE FETTE FETEE PETEE PEEE SN W

-

0 0.5 1 1.5 2 25 3 35 4

A 2
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Phase structure in the Schwinger model at non-zero density

e no analytical solution available

e prediction of phase diagram in ; —m plane

v

asianun Aueg

Quarks and Gluons

Temperature T [MeV]

i\ DTHE
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J / Color Super-
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1
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Higher dimensions

e Projected Entangled Pair States (PEPS)

(b)  PEPS

PEPS are tensor networks for 2-d systems
used in solid state physics
computational cost x D' — need new ideas for tensor networs ...

. or quantum simulations
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Zeta-regularizing Feynman’'s path integral

e Quantum computing of zeta-regularized vacuum expectation values
(Tobias Hartung, Karl Jansen, arXiv:1808.06784)

1
e Prime goal: give mathematical meaning to
Feynman's trace formula

(O) = TYOe*AT /Tret BT

e provide proof that (O) is physical vacuum expectation value

e advantage of (-regularization

— defined in the continuum (although lattice setup included)
— comprises Minkowski space

e —> solves sign problem:
chemical potential, topological term, real time, ...

e how to apply this in practice?
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Qubit scaling for groundstate calculation

e Our solution: perform quantum computer calculation

e Practical example: compute ground state energy of
1-dimensional hydrogen atom on Rigetti's 8-qubit Agave chip
— performed variational quantum simulation
- continuum MPS also possible?

(a) C (b)

Agave chip Scaling (simulator, no noise)
e simulator: find exponentially fast convergence

e reality on hardware

— gate fidelity Fyo = 0.982 , readout fidelity Fp, = 0.94
— ground state energy with 4.9% error
- more qubits: no significant result
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Zeta-regularizing Feynman’s path integral

e Quantum computing of zeta-regularized vacuum expectation values
(Tobias Hartung, Karl Jansen, arXiv:1808.06784)

1
e Prime goal: give mathematical meaning to
Feynman'’s trace formula

(0) = TrOeHT /TretHT

e provide proof that (O) is physical vacuum expectation value

e advantage of (-regularization

— defined in the continuum (although lattice setup included)
— comprises Minkowski space

e = solves sign problem:
chemical potential, topological term, real time, ...

e how to apply this in practice?
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Summary

lattice QCD calculations very much advanced

outstanding challgnges: chemical potential, CP violation, real time processes

new ansatz: Matrix product states and matrix product operators
testbench calculation: 1 + I-dimensional CP(N-1) and Schwinger models

— spectrum
— chemical potential
- entropy

MPS: much larger systems than MC-MC = closer to continuum
overcomes sign problem

challenge: higher dimensions
» quantum simulations

tensor networks still important tool to check quantum simulations
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