Title: Quantum computing with 3-d surface codes

Date: Nov 14, 2018 04:00 PM

URL: http://pirsa.org/18110080

Abstract: Quantum computers have the potential to significantly outperform classical computers at certain tasks. However, many applications of quantum computers require a fault-tolerant quantum computer. Such a device would function correctly even in the presence of noise. State-of-the art quantum computing architecture proposals require at least hundreds of thousands of high quality qubits to achieve fault-tolerance. These requirements are far beyond today's technology. In this talk, I will present results about a novel quantum computing architecture which is based on 3-d surface codes (a family of quantum error-correcting codes). This architecture may have smaller resource requirements than the current leading architectures for certain experimental parameters. I will show that the 3-d surface code has a transversal CCZ gate and I will discuss a cellular automaton which can be used to decode 3-d surface codes. Time permitting, I will also discuss the relationship between 3-d surface codes and 3-d colour codes.

Pirsa: 18110080 Page 1/72

Quantum Computing with 3-d Surface Codes

Michael Vasmer

November 14, 2018

University College London

Pirsa: 18110080 Page 2/72

Motivation

- Quantum computers have the potential to significantly outperform classical computers at certain tasks
- To deal with imperfect control and decoherence, we must build a fault-tolerant quantum computer
- Current state-of-the art fault-tolerant quantum computing architecture proposals¹ require hundreds of thousands of high quality qubits
- This is far beyond the reach of current experimental systems

1

Pirsa: 18110080 Page 3/72

¹Fowler & Gidney, arXiv:1808.06709

Motivation

- Topological codes have desirable properties such as high error threshold²
- No-go theorems limit 2-d topological codes³
- 3-d surface codes are a family of topological codes closely related to 3-d color codes⁴
- 3-d color codes have useful properties such as transversal non-Clifford gates⁵ and single-shot error correction⁶

2

Pirsa: 18110080 Page 4/72

²Stephens, *Phys. Rev. A* 89, 022321 (2014)

³Bravyi & König, *Phys. Rev. Lett.* 110, 170503 (2013)

⁴Kubica et al, *New J. Phys.* 17, 083026 (2015)

⁵Bombín, *New J. Phys.* 17, 083002 (2015)

⁶Bombín, *Phys. Rev. X* 5, 031043 (2015)

Talk Overview

- 1. Background
- 2. 3-d Surface Code Architecture

Transversal CCZ in 3-d surface codes

Decoding 3-d Surface Codes

- 3. Relationship Between Surface Codes and Color Codes
- 4. Conclusion

3

Pirsa: 18110080 Page 5/72

Pirsa: 18110080 Page 6/72

Stabilizer Codes

- ullet Code described by stabilizer \mathcal{S} , an abelian subgroup of the Pauli group where $I \notin \mathcal{S}$
- For all codewords $|\psi\rangle$: $S|\psi\rangle = |\psi\rangle \ \forall S \in S^7$
- Detect errors by measuring generators of stabilizer

1

⁷Gottesman, PhD Thesis, Caltech (1997)

- Code defined on some (Euclidean)
 3-d lattice with boundaries
- Two types of boundaries: 'rough' and 'smooth'
- We consider lattices with two smooth boundaries and four rough boundaries

5

Pirsa: 18110080 Page 8/72

- Qubits on faces, X stabilizers associated with cells and Z stabilizers with edges
- One logical qubit
- Logical \(\overline{Z} \) operators are strings of
 Z operators which terminate at opposite smooth boundaries
- Logical \overline{X} operators are membranes of X operators whose boundary spans the four rough boundaries

C

Pirsa: 18110080 Page 9/72

- In the bulk, each physical qubit is acted upon non-trivially by two X stabilizer generators and $m \ge 3$ Z stabilizer generators
- Every physical qubit on the smooth boundaries is acted upon by a single X stabilize generator
- ullet Every physical qubit on the rough boundaries is acted upon by fewer than $m\ Z$ stabilizer generators

7

Pirsa: 18110080 Page 10/72

Pirsa: 18110080 Page 11/72

Pirsa: 18110080 Page 12/72

- In the bulk, each physical qubit is acted upon non-trivially by two X stabilizer generators and $m \ge 3$ Z stabilizer generators
- Every physical qubit on the smooth boundaries is acted upon by a single X stabilize generator
- ullet Every physical qubit on the rough boundaries is acted upon by fewer than $m\ Z$ stabilizer generators

7

Pirsa: 18110080 Page 13/72

Rectified Picture

- Consider a stack of three 3-d surface codes
- Rectified picture⁸ lattice which describes all three codes
- Qubits on vertices, Z stabilizers on faces, X stabilizers on cells
- Different colour cells & faces correspond to different codes

8

Pirsa: 18110080 Page 14/72

⁸Vasmer & Browne, arXiv:1801.04255

Pirsa: 18110080 Page 15/72

Pirsa: 18110080 Page 16/72

Pirsa: 18110080 Page 17/72

Rectified Picture

Kitaev Code	X checks	Z checks
Cubic	g-cells (octahedra)	<i>rb</i> -faces (squares)
Rhombic (B)	<i>b</i> -cells (cuboctahedra)	rg-faces (triangles)
Rhombic (R)	r-cells (cuboctahedra)	<i>bg</i> -faces (triangles)

Pirsa: 18110080 Page 18/72

9

Rectified Picture

Kitaev Code	X checks	Z checks
Cubic	g-cells (octahedra)	<i>rb</i> -faces (squares)
Rhombic (B)	<i>b</i> -cells (cuboctahedra)	rg-faces (triangles)
Rhombic (R)	r-cells (cuboctahedra)	bg-faces (triangles)

Pirsa: 18110080 Page 19/72

9

Pirsa: 18110080 Page 20/72

Pirsa: 18110080 Page 21/72

Pirsa: 18110080 Page 22/72

Pirsa: 18110080 Page 23/72

Cubic Lattice

10

Pirsa: 18110080 Page 24/72

Rhombic Dodecahedral Lattice

11

Pirsa: 18110080 Page 25/72

Rhombic Dodecahedral Lattice

11

Pirsa: 18110080 Page 26/72

Rectified Lattice with Boundaries

12

Pirsa: 18110080 Page 27/72

Pirsa: 18110080 Page 28/72

Pirsa: 18110080 Page 29/72

• Can always write the encoded states of a (k = 1) CSS code as follows:

•
$$|\overline{0}\rangle = \sum_{S \in \mathcal{S}_X} S |0\rangle^{\otimes n}$$
,
• $|\overline{1}\rangle = \overline{X} |\overline{0}\rangle = \sum_{S \in \mathcal{S}_X} S\overline{X} |0\rangle^{\otimes n}$

• The combined computational basis states of the three codes in the stack can be written:

$$\left|\overline{\alpha\beta\gamma}\right\rangle = \sum_{S_r, S_g, S_b} S_r \overline{X}_r^{\alpha} \left|0\right\rangle^{\otimes n} \otimes S_g \overline{X}_g^{\beta} \left|0\right\rangle^{\otimes n} \otimes S_b \overline{X}_b^{\gamma} \left|0\right\rangle^{\otimes n}, \quad (1)$$

where $\alpha, \beta, \gamma \in \{0, 1\}$.

13

Pirsa: 18110080

- To prove CCZ is transversal, we compute the action of $CCZ^{\otimes n}$ on the computational basis states
- Consider the state $|\overline{000}\rangle$
- Apply $CCZ^{\otimes n}$:

$$CCZ^{\otimes n} \left| \overline{000} \right\rangle = \sum_{S_r, S_g, S_b} (-1)^{\mathcal{O}(S_r, S_g, S_b)} S_r \left| 0 \right\rangle^{\otimes n} \otimes S_g \left| 0 \right\rangle^{\otimes n} \otimes S_b \left| 0 \right\rangle^{\otimes n}$$
(2)

• $\mathcal{O}(S_r, S_g, S_b)$ counts the number of vertices (triples of qubits) where S_r , S_g and S_b all act non-trivially

14

Pirsa: 18110080 Page 31/72

- ullet S_g are associated with g-cells, S_b are associated with b-cells
- S_g and S_b overlap (both act non-trivially) on gb-faces (faces shared by one g-cell and one b-cell)
- ullet The Z stabilizers of \mathcal{SC}_r are associated with gb-faces
- Therefore all S_r (X stabilizers of \mathcal{SC}_r) have even overlap with gb-faces

$$\Rightarrow CCZ^{\otimes n} |\overline{000}\rangle = |\overline{000}\rangle$$

15

Pirsa: 18110080 Page 32/72

- Consider the state $|\overline{100}\rangle$
- We need to compute $\mathcal{O}(S_r\overline{X}_r, S_g, S_b)$, the number of vertices (triples of qubits) where $S_r\overline{X}_r$, S_g and S_b all act non-trivially
- We already know that S_g and S_b overlap on faces which support \mathcal{SC}_r Z stabilizers
- $S_r \overline{X}_r = X'_r$ commutes with all \mathcal{SC}_r stabilizers

$$\Rightarrow CCZ^{\otimes n} |\overline{100}\rangle = |\overline{100}\rangle$$

16

Pirsa: 18110080 Page 33/72

- Other cases are similar
- Care needs to be taken when dealing with the boundaries
- End result is that only $|\overline{111}\rangle$ picks up a -1 phase, which implies that $CCZ^{\otimes n}$ implements a transversal \overline{CCZ}

17

Pirsa: 18110080 Page 34/72

3-d Surface Code Architecture

- Use 3-d surface code to produce $|CCZ\rangle = CCZ |+++\rangle$ states
- ullet Transfer $|CCZ\rangle$ states into 2-d surface code architecture using lattice surgery

18

Pirsa: 18110080 Page 35/72

3-d Surface Code Architecture

 Given a |CCZ| state, we can implement a CCZ gate using only Clifford gates and Pauli basis measurements (both fault-tolerant in 2-d surface code architecture)

19

Pirsa: 18110080 Page 36/72

3-d Surface Code Architecture

- 3-d surface code eliminates the need for magic state distillation (substantial overhead in standard 2-d surface code architecture)
- Our architecture best suited to networked quantum computer e.g. ion-trap qubits connected with photonic links⁹

20

Pirsa: 18110080 Page 37/72

⁹Barrett & Kok, *Phys. Rev. A* 71, 060310 (2005)

Decoding 3-d Surface Codes

- To estimate architecture performance, we need a decoder
- Decoder estimates an error given an error syndrome (stabilizer measurement outcomes)
- Z errors: Matching
- X errors: cellular automaton
- Cellular automaton decoder attractive because it is local and single-shot

Pirsa: 18110080 Page 38/72

21

Previous Work

Decoder	Perfect Measurements	Measurement Errors
Renormalization ¹⁰	$p_{th} = 17.2\%$	$p_{th} = 7.3\%$
Toom's Rule ¹¹	$p_{th} pprox 12\%$?

- Above decoders only work for cubic surface codes.
- We need a decoder which works for rhombic dodecahedral surface codes as well.

22

Pirsa: 18110080 Page 39/72

¹⁰Duivenvoorden et al, arXiv:1708.09286

¹¹Kulkarni & Sarvepalli, arXiv:1808.03092

Toom's Rule in 2-d

- Square lattice, periodic boundaries
- Qubits on faces, Z checks associated with edges
- Cellular automaton for each face 12
- If N and E edges unsatisfied, then flip face
- Resilient to 'measurement noise' 13

23

Pirsa: 18110080 Page 40/72

¹²Toom, *Multicomponent Syst.* 6, 549-575 (1980)

¹³Grinstein, *IBM J. Res. Dev.* 48, 5-12 (2004)

Toom's Rule in 2-d

25

Pirsa: 18110080 Page 41/72

Toom's Rule in 2-d

26

Pirsa: 18110080

Toom's Rule in 3-d

- Cubic lattice, periodic boundaries
- Qubits on faces, Z checks associated with edges
- Cellular automaton for each face
- Apply Toom's rule in xy, xz and yz planes sequentially 14

28

Pirsa: 18110080 Page 43/72

¹⁴Breuckmann et al, *Quantum Inf. Comput.* 17, 0181 (2017)

Sweep Rule

- Generalisation of Toom's rule to a wide range of lattices¹⁵
- Provable threshold (for perfect measurements)
- \bullet For 3-d toric code, numeric evidence of robustness to measurement errors, $p_{th} \approx 2\%^{16}$

29

Pirsa: 18110080 Page 44/72

¹⁵Kubica & Preskill, arXiv:1809.10145

¹⁶Kubica, PhD Thesis, Caltech (2018)

Cellular automata on vertices

30

Pirsa: 18110080 Page 45/72

For each vertex v, flip face $f \ni v$ if:

- Boundary of the face (restricted to the neighbourhood of v) matches non-zero syndrome (restricted to the neighbourhood of v)
- Above non-zero syndrome edges have positive inner product with sweep direction

31

Pirsa: 18110080 Page 46/72

32

Pirsa: 18110080 Page 47/72

33

Pirsa: 18110080 Page 48/72

34

Pirsa: 18110080 Page 49/72

35

Pirsa: 18110080 Page 50/72

- Rhombic dodecahedral lattice is not vertex transitive
- Two types of vertex, sweep rule is different at each vertex

36

Pirsa: 18110080 Page 51/72

- Rhombic dodecahedral lattice with periodic boundaries
- Numeric evidence for threshold $p_{th} \approx 1.55\%$
- Investigated the sustainable threshold: threshold as a function of error correction rounds N
- In each round:
 - Qubit flips with probability p
 - Syndrome flips with probability q
 - One application of sweep rule to each vertex
- After N rounds, 'readout' (apply sweep rule with no errors O(L) times), where L controls lattice size

37

Pirsa: 18110080 Page 52/72

Example threshold plots

Pirsa: 18110080 Page 53/72

38

Problem: in lattices with boundaries, there are some persistent syndrome configurations which are not removed by the sweep rule

40

Pirsa: 18110080 Page 54/72

Problem: in lattices with boundaries, there are some persistent syndrome configurations which are not removed by the sweep rule

41

Pirsa: 18110080 Page 55/72

Problem: in lattices with boundaries, there are some persistent syndrome configurations which are not removed by the sweep rule

42

Pirsa: 18110080 Page 56/72

Solution: cycle the sweep direction

43

Pirsa: 18110080 Page 57/72

44

Pirsa: 18110080 Page 58/72

44

Pirsa: 18110080 Page 59/72

- Errors exist which sweep rule doesn't remove (unlike toric)
- Subroutine at the readout step can try to correct these errors
- Evidence of sustainable threshold $p_{sus} \approx 1.43\%$
- Need to go to larger lattice sizes to have more confidence

45

Pirsa: 18110080 Page 60/72

Example threshold plots

Pirsa: 18110080 Page 61/72

46

$$p_{th}(N) = p_{sus} \left(1 - \left(1 - rac{p_{th}(1)}{p_{sus}}
ight) N^{-\gamma}
ight)$$

47

Pirsa: 18110080

- Boundaries even trickier to deal with than the cubic case
- Some 'faces' only contain one edge
- Currently working out the correct sweep rule for the boundaries

48

Pirsa: 18110080 Page 63/72

Relationship Between Surface Codes and Color Codes

Pirsa: 18110080 Page 64/72

Previous Work

- Color codes are another family of topological stabilizer codes
- Color codes can be transformed into multiple surface codes by local Clifford unitaries¹⁷¹⁸¹⁹
- In 2-d, transformation can be understood as code concatenation²⁰ (concatenate two 2-d surface codes with the [[4,2,2]] error-detecting code to get a 2-d color code)

49

Pirsa: 18110080 Page 65/72

¹⁷Bombín et al, *New J. Phys.* 14, 073048 (2012)

¹⁸Delfosse, *Phys. Rev. A* 89, 912317 (2014)

¹⁹Kubica et al, *New J. Phys.* 17, 083026 (2015)

²⁰Criger & Terhal, Quantum Inf. Comput. 16, 1261 (2016)

- We showed that we can transform three 3-d surface codes into a 3-d color code by concatenating the three surface codes with the [[8,3,2]] error-detecting code²¹
- This transformation could be potentially realised in a near-term experiment (for small codes)

50

Pirsa: 18110080 Page 66/72

²¹Vasmer & Browne, arXiv:1801.04255

- The [[8,3,2]] code is the smallest example of a 3-d color code
- Qubits on the vertices of a cube
- Single X stabilizer $X^{\otimes 8}$
- Z stabilizers associated with faces of the cube
- ullet Non-Clifford T-gate $(T=diag(1,e^{i\pi/4}))$ is transversal in this code

51

Pirsa: 18110080 Page 67/72

The transformation between three surface codes and one color code has a nice geometric interpretation in the rectified picture

52

Pirsa: 18110080 Page 68/72

The transformation between three surface codes and one color code has a nice geometric interpretation in the rectified picture

53

Pirsa: 18110080 Page 69/72

Pirsa: 18110080 Page 70/72

Summary & Open Questions

In this talk:

- Proposed 3-d surface code architecture which may have advantages over current state-of-the art architectures
- Adapted sweep rule decoder to work for codes with boundaries

Open questions:

- How does the resource overhead of our architecture compare with current state-of-the-art architectures?
- Can renormalization group decoders be designed for the rhombic dodecahedral lattice?

54

Pirsa: 18110080 Page 71/72

Acknowledgements

Joint work with Dan Browne (UCL) and Alex Kubica (PI)

55

Pirsa: 18110080 Page 72/72