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Abstract: <p>Anomaly cancellation conditions place strong constraints on many physical theories. In the traditional framework, local and global
anomalies are detected by computing an eta invariant of a certain Dirac operator on a mapping torus. Recent research has uncovered the existence of
finer anomaly cancellation conditions, not visible in these traditional settings. | will review the traditional and refined anomalies, and apply them to
various symmetries of interest in particle physics. Examples include the (various global forms of) the Standard Model, GUT's, and discrete gauge
symmetries of physical interest such as proton triality and a certain Z4 symmetry in the (MS)SM.</p>
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Our motivation:

Q: Do gauge anomalies cancel in the Standard

Model?
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Our motivation:

Q: Do gauge anomalies cancel in the Standard

Model?

Recent discovery of finer anomaly conditions.
[Kapustin-Thorngren-Turzillo-Wang "1 4, Hsieh-Cho-Ryu " 5,Witten "15...]

We study these anomalies in pheno interesting QFT’s.
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ANOMALIES |




What is an anomaly?

We will work in Euclidean signature and will only consider
lagrangian theories.

Basic object: Partition function with sources. If there is a
symmetry G, we can couple to a background gauge field:

T = /D\IJ exp(—S|¥, Ag|)

There is an anomaly if the partition function is not gauge-
Invariant.
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We can gauge the symmetry by summing over physically
inequivalent gauge fields.

Iwo classes of anomalies:
Local: Anomaly in infinitesimal gauge transformation

Global: Anomaly in transformation not continuously
connected to the identity.

Rest of the talk: Fermion anomalies, where
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Local fermion anomalies are well understood in terms of the
Wess-Zumino descent procedure:

(5‘(18 = Og_[d+]

Id+ i dl{'i+2

Local anomaly cancellation in d dimensions is equivalent to
vanishing of (d+2) anomaly polynomial:

= [é(jf)ch( )szo

fermions
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Global anomalies are subtler. Let us discuss the prototype [Witten '82]
: A 4d Weyl fermion in the fundamental of SU(2). Since

m1(SU(2)) = Zs

on S*there is a gauge transformation not connected to the identity.

Consider |-parameter family of connections
44t = (1 o f)14(] + t;—4g

These can be regarded a gauge field on S#xS!(the mapping
torus)

4
\ /
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Witten shows that there is an anomaly:
Z|A,] = Z[Ap| exp(ima)

with « (which can only be 0 or |) given by a quantity called the
mod 2 indeXx of a different five-dimensional real Dirac
operator defined on the mapping torus

Anomaly computed via a higher dimensional auxiliary
theory.
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ANOMALIES |

Back to the future
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We want a general prescription to compute fermion
anomalies. Let’s just evaluate the fermion path integral (easy for
free fermion; interactions don’t change topology)

/ [Dyle=® =] / diprdipre P> = PE(iID)
. /\ b

If the Pfaffian is not a well-defined function of the connection,
there is an anomaly.

However, it is always a section of the Pfaffian line bundle.
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RE DARFREEDIIFIECOREM

The Dai=Freed theorem [Dai-Freed '94] tells us that there is another
: — 274 e . .
quantity ¢ “™*" which is also a section of the Pfaffian line bundle!

That means that
e —2min
Pf(ilD)e
is a complex number, or equivalently, that we can write

Pf(iD) = |Pf(iD)

(iZﬂ"m

The point is we know how to compute 7] .

Pirsa: 18110074 Page 13/38



The definition of n is convoluted: If the theory is defined on
manifold X, pick Y such that boundary(Y)=X

On Y, define a new Dirac operator
Dx, related to the one on X in a
particular way [Witten '85,Witten '15,

Yonekura '| 6]
}f
Put (generalized) APS boundary
conditions so that Dx is self=-
adjoint [Atiyah-Patodi-Singer ‘75,Yonekura ' 6]

Then n is the APS=n invariant of Dx
Z sign(\) 4+ Dim Ker(i) y)

/\¢“ reg.
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In this language: Anomaly = dependence on the choice
of ¥

Familiar story: Defining a CS interaction on X using an auxiliary

manifold Y.
/ B AA = / FNAFE
N— e JY

The theory is well-defined if it is trivial on a closed 4-
manifold

/ F/\F—/ F/\Fz/ FANF eZ
JY, LY JY UY:

Y X Y,
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Similarly, anomaly free means that

exp(2miny) = 1
on any “allowed” closed (d+)-manifold Y (n behaves nicely
under gluing)
Two classes of Y’s are particularly interesting:
Y’s that are themselves boundaries of (d+2)-dimensional Z

Mapping tori X x S
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IfY is the boundary of some Z, we can use the APS index
theorem

~

Ill(‘l(wz) — {,Y —|- / 44(1{)('}l(f1)
JZ

which means that
exp(2miny ) = exp 27r'é/ g,
J I

In other words, requiring no anomalies for these Y is equivalent
to local anomaly cancellation.

Once local anomalies cancel, n is a topological invariant.
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If Y is a mapping torus for a gauge transformation not connected
to the identity, then exp(2TTi Ny)=| means absence of the
associated global anomaly.

What happens if we demand exp(2TTi ny)=1| for any Y!

We get additional constraints.

Original example: 3d Majorana fermions on non-orientable
manifolds (top. superconductor). Mapping torus sees mod 8
anomaly; N of RP4 sees a mod 16.
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Why should this “anomaly” cancel?

Consistency with gluing and pasting & reflection positivity
[Witten "15+...]
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Another reason: In gravity, topology can change!

Allowing topology change produces new nontrivial “closed paths™
in configuration space.
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Just one caveat to keep in mind: Green-Schwarz
mechanism.

Local anomalies: Add extra light degrees of freedom, and
anomalous spectrum is OK

G[Obal anomalies [Garcia-Etxebarria-Hayashi-Ohmori-Tachikawa-Yonekura ' 7]. Couple o

tQFT which either
Has the same anomaly as the anomalous fermions.
Forbids the anomalous background

No extra local degrees of freedom
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APPLICATIONS
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Dai-Freed anomalies have only been studied in a few
systems.

A priori, any gauge theory could be Dai-Freed

anomalous!
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Dai-Freed anomalies have only been studied in a few
systems.

A priori, any gauge theory could be Dai-Freed

anomalous!

Rest of talk: Apply Dai=-Freed to symmetries of
interest in particle physics.
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Once local anomalies cancel, n is a bordism invariant:

exp(2miny, ) = exp(2mwiny, )

b
Yo
Bordism is an equivalence relation, which defines bordism groups
0BG

These classify (d+1)-dimensional manifolds, with a principal G-bundle,
modulo bordism (bundle extends over bordism too)

Computed using AHSS.

N is a group homomorphism from the relevant bord. group to U(I).
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GENERAL 5 TRATEGY

Compute relevant bordism group

If it vanishes, there is no new anomaly.

Find a nontrivial manifold Y, compute n.

If it vanishes, there is no new anomaly.

If N is nonvanishing, there is an anomaly.
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T HE STANDARD MODEL

Experiments only probe the gauge algebra of the SM.There are
four possibilities [Tong'17...)

SIS TR U]
E ..

I' € {1,Z3,2Z3,Z¢}

The discrete group [ acts trivially on the SM fermions.

['=Zs is “maximal”: Includes bundles for any other choice of I'.

This is also the group that embeds in SU(S5).
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The SM fermion spectrum falls into SU(5) representations.

Any (SU(3) x SU(2) x U(1))/Zs bundle is 2 SU(5) bundle

too!

As far as anomalies are concerned, the SM is equivalent to the

SU(5) GUT. But since
Spin / ~T i
QP (BSU(5)) = 0
The SM is free of Dai-Freed anomalies

Similar situation for Spin(10).
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To get an anomaly, we need to look at more general spaces.
What about the SM in non-orientable spaces?

Only makes sense if one assumes CP breaking in SM is
spontaneous.

Need a Pin structure to define fermions, which can change
cob. groups, e.g. QeFn=Z16, but (2gSPin=0,

Majorana masses require a Pin+ structure (serg et al o).
We have again

Pin™ (BSU(5)) = QP (BSU(5)) = 0

J J

Pirsa: 18110074 Page 31/38



Last try: SM + right-handed neutrinos + gauged (B-L).

Since all fermion charges under (B-L) are odd, we can now
consider the SM on Spinc manifolds or even Pinc

manifolds
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PISIC N A= @ RGO =S

Lucky! Bordism groups & n invariants already computed by
mathematicians [Bahri-Gilkey ‘ 87, Gilkey '89, Gilkey-Botvinnik '94] both for
Spin and Spin¢ cases. They are nontrivial.

We can compare with known anomalies of discrete
symmetries. [Ibaiez-Ross' 91].  hese were originally obtained by
demanding that the Z, embeds in a U(I).

2 Z s; = 0mod N, Z s =0mod N

Only linear constraints are “UV-independent” [Banks-Dine* 91]
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For 43,
Z s; = 0mod 3 (Linear IR)

Z s; = 0mod 9 (Dai-Freed)

This one has phenomenological consequences: Proton triality (and also
hexality) in the MSSM is a IR-anomaly free Z3 symmetry, but it has a mod
9 anomaly

el ) g il e (SRS B
5 =S i B | Z $; =3mod9

E

o] |
I
| =
[ —
T

,. MSSM
0|-2]-

Dai-Freed anomaly cancellation requires 3k generations.

Consistent with previous results [Dreiner etal.’'04]: U(1) embedding of proton
triality only with gen. dependent charges.
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B =@ FERE @ [00/@ e

Topological superconductor: | st example of Dai-Freed

anomaly | Kapustin- | horgren- lurzillo-VWang |14, Witten 015, Hsieh-Cho-Ryu "1 6]

T-invariant 3d fermions. Global grav. anomaly requires
multiple of 8.

Dai-Freed enhances to a multiple of |6, because

Pin™
Q,l — Zlg

# of fermions/ generation in SM + rh neutrinos = |6. Not a
coincidence!

Page 35/38



Pirsa: 18110074

The SM + rh neutrinos has a Z4 symmetry (center of Spin(10))
that acts on every fermion by multiplication by i.

We can use this to put the SM on manifolds with a Spin™
structure [Tachikawa Yonel(ur';l'IB_].TranSition functions Of the Spinors in

(Spin x Z4)/Z;

Massless fermions

The Smith /
homomorphism

maps

Spin®“ Pin’
S—Zd i 1 — SFZ(] Profile of Higgs field

Physical interpretation: Higgsing the Z4 w. a nontrivial bundle,
there is a 3d locus with massless Pin* fermions.
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GOINEEUSIOINS

We've explored a new kind of anomaly in four dimensional gauge theories of
phenomenological interest.

SM and GUT’s are anomaly free. Can put SM on non-Spin manifolds (related to
topological superconductor).

New anomalies for discrete symmetries e.g. proton triality.

Top. GS means these anomalies can be cancelled; still good for 't Hooft anomaly
matching

Qutlook

Dai-Freed anomalies with twisted spin structures [Wang-Wen-Witten '18]
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Thank you!

Pirsa: 18110074



