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Abstract: <p>We consider a natural extension of genera relativity, by the addition of aterm which is atopological invariant when the cosmological
constant is in fact constant.& nbsp; Allowing the cosmological constant to vary, we discover it is endowed with a natural dynamics, which also
includes a mechanism to suppress its value.& nbsp; & nbsp;A key role in hiding the consequences of a dynamical cosmological constant is played by
the torsion of the spacetime connection.</p>

<p>As a dynamical variable, the varying cosmological constant turns out to be canonically conjugate to a measure of intrinsic, cosmological time,
given by the Chern-Simons invariant of the Ashtekar connection (which we originally studied with Chopin So0).&nbsp; As a result, a small
guantum universe that "knows what time it is" does not know the value of the cosmological constant, and visa versa.& nbsp; & nbsp;This leads to
some novel scenarios for the early universe.</p>

<p>Thisisjoint work in progress with Stephon Alexander, Joao Magueijo and Robert Sims.</p>
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The hidden chirality of general relativity

General relativity is parity even but there are several indications
that there is a hidden chirality

e The simplest way of writing the action and field equations is
the Plebanski action, which is cubic, so the EOM
are quadratic, but it is chiral (L-R asymmetric.)
These are closely related to the Ashtekar variables.
e Twistor theory reveals a beautiful chiral complex geometry of
spacetime.
e These are related to the near-topological form of GR:
e GR=TFT+ constraints
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Might this hidden chirality manifest itself in quantum gravity?
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Might this hidden chirality manifest itself in quantum gravity?

Previous attempts:
Parity odd CMB observable (T-B mixing)

Parity odd modifications of dispersion relations
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Might this hidden chirality manifest itself in quantum gravity?

Here we propose a natural extension of GR that yields a time
dependent A, which is constrained by its dynamics so that:

1
; " ) ) A N . n fr
A [(167%\? [V, ¢ ote: no ree
s — 2 parameters or
3 V! dimensional parameters.
ie natural!!
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Might this hidden chirality manifest itself in quantum gravity?

Here we propose a natural extension of GR that yields

(

1672

3

) 1) —v!"]-'ﬂ)‘.

Note: no free
parameters or
dimensional parameters.
ie natural!!

+ small damped
oscillations around
the fixed point.
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The Chern-Simons Intrinsic-time
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The Ashtekar variables are complex coordinates
for real, Lorentzian spacetimes:

- : . ? |
A,i = 3d spin connection,, + —q K., Ef’

qqab — EmEf Koy = Cjab
{AL(2), E](y)} =1G6,6°6° (y, x)

JER — / dt / WEYA, — NH — N°H, — w;G"
. J Y
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Constraints generate gauge transformations:

Gauss's law for SU(2): G' =D, E™

All constraints

) L
Diffeomorphism constraint H, = EJF", e cubic

Hamiltonian constraint: H = €;z E“EY(Fh +4eu.E*)
Equations of motion:

ui — { Luﬁ/ 1\ H} — \rzcl(—;_;] FI’J(Q _.j,+/\(ux F‘ )

Fj\u:i — {E(I.l‘*\/ "\"' } — ZC' 1k DJJ(‘\TE_(}! Ef)

All eom are

Self-dual solutions: — _A f“.i ,
ab — €abe 1Y ‘ quadratic!
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o . . . JEE _ﬁ F('i
Explicit deSitter solution: ab — 3 €abc L

deSitter spacetime is (was) the unique lorentzian self-dual solution:

We make the spatially
flat ansatz:

A,; =~ 3d spin connection,; + 2¢é,;

— i AN
44,“'_ -_ 1 /\/3‘/‘(()6(11' — ]f_:‘llﬂ. — _‘f?(t)gcubr

The self-dual condition implies: E”‘j

= 25" = ewi = fOui

To fix the solution fix the lapse N N =~ de (((3)_1 = f_3
The equations of motion give: f — /\/3:\?‘/‘4 - //\/3f
This gives the dS metric: -(1-52 — —(H-Q _I__ (32‘ /f\f3r(d‘l._u.)2
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Hamilton-Jacobi, deSitter and Chern-Simons theory

Let us solve the constraints with a Hamilton-Jacobi function S(A).

S (A)
A at

, ar —
The momenta are given by E —

To get deSitter we impose the self-dual condition:

i N e A 65(A
Plj-l‘ = __(aba:h'u — —C.qfﬁ.‘( -( )
| 3 3 O"x()i

This has the unique solution:
S 2 Ye
OCS — CS
3N .

Chern-Simons invariant:

Yos = Tr(AAdA + 24%) 6 Yo _

(;4:1 11 T

abe 1
2e"™Fy,
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The Kodama State

Hence the H-J function for dS is: S" - } .y

This suggests as an ansatz the state:

- f Y-
/ —_— A > €3
\UI\.(J;‘,) — ."\‘ (}'_'
Here we are using the connection representation:

< AW >S=V(A) FE* = =hG<

l" ‘!‘r

In fact, with a certain choice of operator ordering,
this is an exact solution to the quantum constraints:
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The Kodama State

r o5 | Yes Scs = — | Yes
Wi (A) = Ned ¥ ; 5

Its transform to the spin network representation is exact:

V[ = [ dA T[T, Alei=ScsA)

for A Euclidean, this is the Kauffman bracket or Jone’s polynomial of the network.
—> Requires framed spin networks labeled with SU (2) reps.

—> The level, k, is related to A:
67

~ hGA

A.
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Thermality of the exact quantum theory on 2=53

Recall:
e The KMS condition. Thermal states are periodic in imaginary time.
e The natural time coordinate is: Teos = 1Im J Y(L’({)

e The Euclidean continuation has A, real
Hence the natural Euclidean time coordinate is Trcs = f }’Ews(;l)
But this is a periodic coordinate on the configuration space.

Under large gauge transformations:

/ Yos(A) — f Yes(A) + 8x2n

~

— 1

Hence there is a dimensionless temperature. T g
AIMMLCSS — 8r2

Hence, the whole quantum theory of gravity with >=53is thermal!
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, _ 1
[dimless = g3

To connect this with the deSitter temperature we scale on a trajectory
corresponding to an S3slicing of dS:

The relation between the two time coordinates is given by

wl>]

Mg
—_— = NdTes(A). HY = 47
o o {Tcs(A),H} =4 \/

This leads to the dimensional Gibbons-Hawking temperature:

Note: this does not

1 ,’/\ just say that QFT on a$S
s o V 3 Is thermal. It says
\
quantum gravity with

nAcitiviae (CC ic
PDOSITIVe LL IS

(8

intrinsically thermal.
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The Lorentzian Chern-Simons time in the homogeneous case:

‘4({f — ,()ui(} . 1()({-('['1”

Tes = / ImTrA? = Ha®
g

. A 5
This is the number of co-moving volumes in an Horizon volume.
Tes <1 “comoving volume is within the horizon”

Tes >1 “comoving volume is outside the horizon”
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Topological dynamics of A

We consider the action:

. | ' _ _ , 3
S = _ / e ey Ney AN Rea(A) —20heq Nep Ae“ Ae?} + —R™ A Ry
87T(l J M )\

P

Plebanski form:

- -

ol v (wan . Acan . w 1 AR B B s
SPt = / SYY AR — =EYATap — =P apcp TP AT — —RP ARAp| +cc
z\ﬁ(r M (l 2 )'\ )

dYes = RYP A Rap
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Topological dynamics of A

The new term:

O ! 3, A3 1 3 .
S¢S =——— [ Z(RMW AR\ —R*P ANRap)=———= | ZdIm(Ycs)
oG J M A 167G J M A
2 3 2 . 3 Reproduces the
_ il P il e Im part of the
() /\ 2A ImYes + R, /\ ‘)AII”}(“ 5 Kodama state on
T Y& final 7 Y &initial initial and final
surfaces

' 3
+ ! / d(—)ImYes
v A

167G Joq
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Topological dynamics of A

We consider the action:

_ | ‘ _ . _ . 3
S = e / e Le, Ney N Rea(A) — 2Aheq Ney A e Ae) + ﬁ[f”" A Rgp
Ol | A [

A

Plebanski form:

Jad ! " ~AB , Acas , v ] ~AB Ny CD 3 LA,
S = / (}L”’ ANRap ‘.L”) ANXan ‘)‘I’.mc'nl” A B! .)\H” ANRap | +cc

) & ey

No free parameters!!! Coefficient of RR term fixed by the condition
that e*S match the Kodama state.
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A duality symmetry for A

Look at the terms in the action containing A.

—1 A Ny . , 3 .
S"\ = T Te / {.;L_Ug AN L‘”; +2a A R"H + KR_.\;; AN R'”g}
)i T J M 3

Consider the formal on shell symmetry.

R:\H s ﬁ AB T:llf N i R;’lﬁ
" 37 B A
The fixed points are the self-dual solutions.

~]

A
AB ‘ AB
R — §E 3 (T)‘,i.. BCDD — (]
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A duality symmetry for A

Look at the terms in the action containing A.

y —1 ' A_ gy B , 3 ,
b.\ . s / {,;24_113 /\L“H + L:‘!“ A R.Uf + KR_-XH A R.'\H}
)i T J M 3

Consider the formal on shell symmetry.

R;\H — ﬁs—wlﬁ \,—1:113 N i R;lf)’
" 37 B A
The fixed points are the self-dual solutions.

A
AB ‘ /
RAB = =348 ®,pep =0,

Surprise: with the new term A doesn’t have to be constant.
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Self-dual solutions A = constant  (CDJ)

Pick an SU(2) connection, AAB, such that FAB satisfies DFAB _

Pick next a constant, A and define:

3
E;lH = _F."IH
A

1/

This satisfies: s2:(AB , s2CD) _ and  pyA'B _

/e Torsion vanishes.

so there exists a frame field e AA| such that:

FAB — (A4 p B

Example: de Sitter or AdS
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Self-dual solutions A = variable

Pick an SU(2) connection, AAB, such that FAB satisfies DFAB _

Pick next a variable, A and define:

vVAB iF.-\H
A

This satisfies: s (aB , y2CD) _ 0

But now there is torsion:

_ 3 _ 3 _ 1
DEAP = §48 = p(——F4P) = INAFAP = ——dA A B8
Aol )= A
there still exists a frame field e A, such that: $47 = ¢4 A ef,

still, solves the Einstein eq with: & 45+ =0

/

71 cD
Fap ngm + PapcpX
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Check of A-variable solutions in Palatini 1
Ru — Ffubuﬂvb A RH!
D

Einstein eq’s in

) l y
terms of 3-forms: R = Q(‘”j‘ = —Aeq (E) 1

b c Iy
Cq = E(r;b('rf(’ Ne Ae
)

| =

This is solved by, Rab

La )h
with variable A: 3¢ Ne (SD)

A

When the torsion P a
is defined by: e N 2A aal (D

To show this, take covariant curl of both sides of (SD):
D LHS =0, D RHS =0 using the definition of torsion (T)

To show consistency, take curl again and use (T) again.
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More on torsion
The definition of torsion is as a 2-form: DeBA — TBA

Hence: SAB = 2¢!4, A DeP) = 264, A T4

Note that as is required for consistency: DADYAB —

Go back to Lorentz indices T — D¢ = de® + AY, N e®

The connection is a 1-form: A% = W (e) + K
Kab s the contortion 1-form, related to the torsion 2-form: 7% = K, A ¢

y ab va.b ¢ a b
We also introduced the 3-form: Dyt = §eb = 271 A €

:; L ( 218 nile} )
AA N F = —dA A e® A el = 27l A el

: . vab
Which we found was: S“’ = A2 A

. . 1 _
Thus, for self-dual solutions: T = —dA N e

}

4

Pirsa: 18110064 Page 26/40



A kinetic energy from torsion

On self-dual solutions to the Aab equations of motion,

| .
ol by al e+ boclBs
A" =w"(e) + K™ K. = —‘ZA( ve s A

R™(A) = R*[w(e)] + DK™ + K* A K"
The effective action has new term in (dA)?2

l

5=
871G

. a3 ab
/ T R(\ri (4)
M

_ | 3 3 '
Qnew _ ' —eqg"" O, N0\ + / e A e’ A K.
o ([, e ounonns [ |
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Effective dynamics for A

Effective dynamics for A

=~ 3 .F".U}/\F,U'
OA =SB AS4p [1- ()3 =
st (/\ 5]'"”/\)?,15

Where

- I ‘ L ] ‘
U= K();t. (\/ _](]! A()p)

There are fixed points at

A FABAF,
A\ = 0; = _ AB
,5 2.-\” /\ S:;\H

Pirsa: 18110064 Page 28/40



Effective dynamics for A

FAB A Fag
YAB A Y AB

L1

There are fixed point at A = 0; _2 — \/

The gravitational chiral anomaly

"3
- al
Vid{' = 1o Rap A R

So the fixed points are at A \/1(i~r2 \/ Yk

/
3 3 YAB A Y AR

Note: GA =~ (Am,)*

Am, ~3 x 10
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A new uncertainty relation.

Another approach is to define a preferred slicing, and

define A and the Chern-Simons time as a function of the slices.

Tos =1Im / Yos(A)

J X

od

Then the new term in the action is

3 / " AI / Vo (A)
- 167hG' A2 ’”-‘ . sl

This implies a new Poisson bracket and uncertainty relation.

b‘fH.f"H"

L] ‘)
l6mG A~

{A, / ImYeos(A)} = 3

S8thlG | -

AAAT('S > <A‘3>
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Effective dynamics for A
Effective equation of motion for A

Seft = —
( SrG

o b -~ :
/ d*re (A + /(RR + (Lij"”()IIAi),,iﬁ) :

FRW solutions N ' . o
ds* = a*(n) [—(f'r/‘ + (9i; + /)-,‘j)(i.l-”(i’lf"}

y AN . . g 1 2, .
A ~+— (ZH — A) A — ((5” —I— ]').”) (0,(‘)14’\ — Ai),AO,A) = —fI— (!\“ — [)RR

2c

deSitter solutions

y 2 A . 1 . .
i A 55 (A2 = bRR) =0,
: 1) | A | 2cH?n)? )
time dependent potential
»=A/) f!“f = pexp|y]

(@)

V() = o ((;'f - 3{)(;1')) : h(z) = [)R]?/"”)J
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Effective dynamics for A

§ 2 A\ . 1 . .
Lo (242 ) A (A" _ zm’) — 0
! (” + A) + 2eH? ) I H

Potential for A y/(A) — (A%~ 30RR)

" (

change to ¢=log A to make kinetic energy canonical:
O = A/ﬂ[ﬁ = pexply]

To find potential for ¢=log A

1 y - /
Vip) = = ((ig) 4+ b(e‘”)
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Effective Potential For Lambda

work in progress
Alexander, Sims, Smolin

/ 1.0
/
5 /
0.5
4
¢ Vigy 3 e VA
0.0 / +
W,
3
-/ 0 0.5
-
0
0 | 2 1.0

)
M,

(b) Effective potential for field ¢ with various b values. For L o i i .

; " g - . . (a) Effective potential for the field A with bRR

b aln) for positive n (as we expect ), propagating time
forward results in smaller b, thus the minima for V(o)

]I(‘l'L)III(’.‘C more negative.
o

MY
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Assume falloff: RR xa ™"

Note: A does not change sign

5 ) 5 B
A< H?exp [ O(10"YH? ( ))}
Ve,
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Coupled numerical evolution Robert Sims, in progress.
' A M 1 ] ~ —
g ) A+ o (Af — bRR) =0 bRR = t°
zC

A
M ( a A

-\ 2 1 ,
(”> = (/)+:‘\)

—z’\/;A.

Initial condition Ao is at twice the fixed point.
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Coupled numerical evolution Robert Sims, in progress.

)

. a

. : AN . | 9 - ] - =
At (82— ) A+ o (A2 bRR) =0 DRI = 18 (;) ZRVE
&C

(p+ A)

n+ :iﬁp(] +w) = —1!5\
0!

A oscillates around and tracks fixed point (black line)

!Ilnﬂ A |
Ma, 10 ,
"W a (t) 7
[IRL) "”'\.\
\*\ 1000
~ \H.\ _
£ ~ =
= 0.010 - =
~ 100
\ - e~ -
0.001 \ —_— T aee
Initial condition Ao - 10 I UPPUREE L
is at the fixed point. e ToemeeTTT
P \.\\ -
Pt b
1 5 10 50 100 500 I| 5 10 S0 100 500
L t
H“vl
VL-‘""". '~
0100 ¥y

- 0010
LYY =
| [lV N

v = 0,001

“IY PA /Pmatter 104

|
10°

0.2
10 S0 1040 500
| 5 10 50 100 500
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Varying the initial Ho Robert Sims, in progress.

Switch to Planck units:

/ ! - 19 - . 5
- a o\ 1 [o°—D | h = AN/M?
(;")H + (3 — ) (,.")! + — ( ' por> ) — () (.) / P
(1l . C [)[“)

¢ =2¢/9(M,/Hy)*

N
(”) _Pto p=p/M,
a 0

xr = ml

S, o.a ,
p+3—p(l4+w)=—0¢ - -
a b(x) = bRR/M,

Initial conditions:
Ao =twice fixed point

Ho fixed by fixing c-tilde
po is then found by solving the Friemann eq.
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Varying the initial Ho Robert Sims, in progress.

Switch to Planck units:

= ~2
C 0

o + (3(1, o d) & + l b — b —0 ¢ = A/J[‘f

¢ = 2¢/9(M,/Hy)*

! 2 f ‘2

. 1 ;\[) - ,
=] == ) (p+ o) P = p/“uﬁl
a 3\ m?

r =mi

b(z) = bl?]?/ﬂ[}_}

1
N
10-4 - n_um\
. h

‘-.:“-..__ .
= 0.010
o]
10 ™ =
= 0001 (oo
= 10 -\ L 0
] ] ™ m 10
O 1y ‘\_ 10 i LI 1y
110 - S 10
™ \~\ . 1ot
\‘\ 10"
| 10 100 1000 104 107 1 10 100 1000 104 10°
Hyt
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alt)

Varying the initial Ho Robert Sims, in progress.

10

10"

¢ =2¢/9(M,/Hy)"

] 10 |
/
|

L] 10 |

] 10

0

] o

Ht
N
“~
\\‘
.
\\
.
| ] i \\\\
5] 0 \.\
[ ] 1] e
10 \"s
\\
| 10 \"\\
‘\\
.
10 100 1000 1o 10°
Hit

Switch to Planck unilts:

3 F N _.‘/-
10° "ETE
= 0 ;j
. o /
/
100 /
- | _
0.01
1 10 100 1000 10°
Ht
1
n_lnn\
“-.':‘--..__
= 0010 R
S 0001 (e N
" A oy
1ot W tmll v
10
- 104
10-°
| 10 100 1000 107
Hit
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Typical behaviours seen, depending on initial conditions:
e Sign of A never changes.

® A goes to time dependent fixed point, which takes it into 0.
® A first shows damped oscillations around fixed point.

e Or A freezes out, leading to A domination.
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