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Abstract: <p>Part 1 is about anomalies and how they can deform generalized global symmetry into 2-group global symmetry.&nbsp; This is
illustrated with ssmple QFT examplesin 4d.& nbsp; Part 2 is about 6d.</p>

<p>6d theories with 2-group symmetry exist, but cannot be conformal.&nbsp; 6d superconformal theories (SCFTs) cannot have 2-group or
higher-form, generalized global symmetries.&nbsp; This requires cancellation of mixed gauge and global terms in the anomaly
polynomial .& nbsp;& nbsp; SCFT relations between conformal and &™t Hooft anomalies will also be discussed.& nbsp;& nbsp; Based on papers
with Cordova and Dumitrescu.</p>
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Anomalies, 2-groups, 6d susy

Ken Intriligator (UCSD)

Based on work with Clay Cordova (IAS / U. Chicago)
and Thomas Dumitrescu (UCLA).
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“What is QFT?”

(See N.Seiberg's website for a talk with this title.)

Perturbation theor oo T Y e

byl 5d & 6d* SCFTs, + IR W

aronne e e deformations U J : A ~

Lagrangian theories € . i e T e :
compactifications

Explore parts of the
space of QFTs via
CFTs + perturbations

(unexplored...something
crucial for the future?)

* d=6 is largest d of SCFTs.
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RG flows, universality

In extreme UV or IR, masses become unimportant or decoupled.
Enhanced, conformal symmetry in these limits. E.g. QCD: UV-free
quarks and gluons in UV, and IR-free pions or mass gap in IR. Now

many examples of non-trivial, interacting CFTs and especially with
SUSY. Can deform them to find new QFTs.

RG flow cartoon: / et here. lick wi h\
“#d.of” UV CFT J(+relevant) ] o 1o oo,

find (or guess) where
the RG flow ends.We
employ and develop
strong constraints,

e.g. anomaly matching,
a-theorem, indices, etc.

- /

RG course graining

v

[IR CFT](+irre|evant)
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RG flow constraints

e 't Hooft anomaly matching for global symmetries + gravity.
They must be constant on RG flows; match at endpoints.

e Reducing # of d.of.intuition. For d=2,4 (& d=6 susy) :a-theorem
ayy > AR a> 0 For unitary thys

conformal (T ~ aFy + Z ;. a-theorem proof of
anomaly:' “ " 4" Komargodski + Schwimmer via

conf’l anomaly matching.

(d=odd: via sphere partition function / entanglement entropy.)

® Additional power from supersymmetry. Supermultiplets and
supermultiplets of anomalies.
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g-form global currents

 Conserved flavor current: 0".J; = 0.Source: A}, bkgd.

a=gliealg.index) § A¢ — ¢ a
=*“q=0-form” global symmetry. (2=glle 2k ) (5"1;;. - (D/z)\)

* Conserved higher q-form global symmms:
Gaiotto, Kapustin, Seiberg, Willett and refs therein.

(qg+1) . YY) [r | l) . ,'[ l
iy Dy with 0= 0.0 Les dx Y =0
()\: ) . :\:'(’]“l) "!'ql'l . o o

o\ Bd—q-1, : J Auxn(;t (] ) =d q 1

5
Fad—g—1

g>0: only abelian, U(1)@ (or discrete subgroup).

E.g.4d u(l) gauge theory with charged matter has U(I)()
global symmetry with «;*) = F,
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Couple all currents to
background fields

a b

* Poincare’: Source = bkgd metric 9y = dab€),€,,
5(“(1)(1 _ 9(”)“ L(1)b

* Conserved flavor current: 0"/ = 0. Source: A;, bkgd.

Invariance: 0A" = (D, \)"
« Conserved >0 current: u = (DA,

S D / BE R Gl g AV = / BUth A xjlatl)

BT — A7 invariance since J« jl7tD) =

wu l)
Background gauge invariance encodes conservation laws.

E.g. for 4d u(l) gauge theory: / B2 A F
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Recall anomalies

Effective action as fn 175 = — 10g( / [dy][dA]eS1B¥-A/1y
Of baCkgl‘OUﬂd fleldSZ WI(B + 68] — W (B ]i_!“| i / 1NB.aB
- \ (descent procedure)

f”-m B.oB ‘_H‘.u«."ll:|!“|. ’“r\n‘ I'|‘[\- ’,n»f'l.‘:|b-‘

For d=2n, the matter content must be gauge anomaly free.
Anomalies encoded in a topological d+2 form in gauge and global
background field strength Chern classes, and Pontryagin classes
for the background metric curvature. Compute via (n+1)-gon
diagram, or inflow, etc. Calculable via various methods.

We discuss mixed gauge+ global anomalies. They quantum-
deform the global symmetry group into a’"2-group.”
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Anomalies (4d case)

Gauge anomalies must vanish for a healthy theory.
Constrains chiral matter content.
gauge gaUge

gauge

Global ABJ] anomaly, only for global U(l)s. If non-zero,
global U(I) is just not a symm (explicitly broken

gauge  gauge by instantons, perhaps to a discrete subgroup).

Global

't Hooft anomalies. Useful if non-zero: must

be constant along RG flow, match at ends.
Globa obal
Our /%auge Does not violate either symmetry! Deforms
star: global symmetry to a 2-group symmetry.

d * _/;‘\:[3]"]' '-)t".‘. !I1:|U|1-|] A !‘.‘1:1”11:&' A:l ’le:|=»|:.|] *'l;;")

Global Global (27) &
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“2-group’’ global symmetry

Non-trivial structure function interplay between conserved
q=2-form current and ordinary currents. Like the Green-
Schwarz mechanism for the background fields. We find
simple examples, use to explore and clarify many aspects.

(See e.g. Kapustin and Thorngren papers, and refs therein.)

Global symmetry: GO . U(]_)(l)

bkgd gauge transf:s/ :
\

WL : 5y : K :
0AT, = (D, A)" 6B = gAW ¢ ‘)/\w,-w.)
4T
+ analog for Poincare’ SO(4) frame rotation of spin connection: Al “w(m dw™)
G
H® = qB®) L0S(A) " CS(w), dH sourced by background

27 ' 167 o
gauge & gravity instanton.
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4d QED example

Consider a 4d (non-susy) QED, i.e. u(l) gauge theory, with N flavors
of massless Dirac Fermion (IR free, needs a UV cutoff).

Global symmetry: S(_..f(f\f)gfn X SU(N)(;;}) X (---[U)Sj)

U (1 ).(»-(1)) broken by ABJ anomaly. Iy o €M
) dyn. u(l)
7 (())) - - glOb&' Y
Uy = u(l)gauge current gauge field.

‘I( 1 )‘P’.‘l.llj"(f
Non-zero mixed anomaly. No broken symmetry.

~ *1 Deforms the global symmetry to a 2-group symm.:
SU(N)L Rk SU(N) L r

r

(SUMNE 3w UME) x SUNE)
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Chiral toy model examples

Consider a 4d (non-susy) theory with two 0-form flavor symms
U(1)a and U(1)c and matter chiral Fermions with charges (qa , qc ).

ga | 9c ks = TeU(1)3 =1 't Hooft C
'l/’l I 3 P P . /\
kaze = TrU(MZU (D e =12 mixed /70\
Vo | 4 A A
I T S kac: = TrU(1)aU()E =0 ABJ=0

o 0T-6 kes = TrU (1) = 0 gauge=0

Take A=global and C=gauge symmetry. Non-zero 't Hooft

and mixed anomaly. 75" = (ka2cea(Fa) + acopi (1)) Aer(fe)
\global/ /gauge
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2-group structure constants

Global 0-form and |-form symmetries: G G

ge 3GV, Gy we call them &0, FAp.
Kapustin & Thorngren: Postnikov class. We also call them 2-group structure constants.

Coefficients of CS terms in invariant field strength HG) . For
quantized charges, compact global groups, these coefficients
must be integers: Kg©), H~p € Z They are scheme indep
physical properties of the QFT. Can only arise at tree-level
level or one-loop. Mixed anomaly terms give this symmetry.

Eg: V()R u(1)e) — UMY xaun, UMY

/ “Mixed anomaly”

I
K A Kazo € 7 _
GLOBAL gauge i coeffs. give 2-group
Kp cfir2c € 2 with no anomaly.
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Likewise 6d anomalies

gauge 8aUgE  Gauge anomalies must vanish. Can use a dyn
GSWS mechanism to cancel reducible parts.

gauge gaUge

Globa Global 't Hooft anomalies. Useful if non-zero. Must
Global Globa] D€ constant along RG flow, match at ends.

gauge—— gauge Does not violate any symmetry. Deforms global

X symmetry to a 2-group symmetry. Here the

Global Global  g3uge group can be non-Abelian. (In 4d, there
is only one gauge vertex, so it must be u(l).)

Example: small SO(32) instanton theory (Witten ’95)

Tt = c2(Fapnvy) (e2(Fsos2)) + (16 + N)pi(T))
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Mixed gauge/global
anomalies and 2-groups

' NP ¢ ,/'r atqge (2 v
(I(l )5;) 4d: *.J(k) — ('l(j,!{;lu;y(') = ‘IZWJ ; g4 — /\ *.](k) (= Z
NG l S — . . (2) - r
[T([ )5;) 6d: *./('L') "i-’-(./ft:-u;nc‘) S_H‘_-’.l.ll [!t«'mrtt‘ A 1;-‘;1“;-_(\- qJ ./\:2 *.l[n' € 7
Conserved since ¢« — 0, charged objects = e.g.
ANO vortex strings (4d), instanton strings (6d).

Couple the |-form global symmetries to -
2-form background gauge fields B. ~ Sid.64 / LA %]

The mixed “anomaly” means that B shifts under a bkgd

flavor or metric gauge transformation A= A+ dAy,

fff B \ d A | 1\_\)"'-_1

~ | e

4T

"
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2-group affects reducible 't
Hooft anomaly matching

Eg u(1)Y x,, u)!}) only has  Try(1)% 't Hooft
anomaly matchlng mod 6k 4 , because of a possible

mn 2)
counterterm: g — /B( ANFD WY nez

Kas — Kas + 6Nk 4 E.g. can gap if TrU(1)% = 0 mod 65 4

TQFTs can give similar, but physical (non-counterterm) terms with
fractional n. They can be used to match 't Hooft anomalies via a
gapped TQFT. E.g. u(l)c gauge thy broken to 7, . TQFT by Higgs
mechanism of field with charge qc > 1. AIIows IrU( )% # 0 to
be matched by gapped TQFT if TrU(1) |_ = 0 mod 6nk4, qcn € 74
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2-group symmetry can be
IR emergent, accidental.

E.e. embed 4d QED model, with 2-group symmetry,

into an su(2) gauge group UV completion, where su(2)

is broken to u(l) by the vev of an adjoint Higgs scalar
Georgi-Glashow model. The global U(1)(") of QED theory
is an accidental symmetry, explicitly broken in the UV

completion by monopole operators. Note subgroups:
GO UMM >UuMmY but GO x; U)W 2 GO

m_l; (l)“f\)u ()B(“)') _ (h’\“) 4+ %/\((1)(]“_1(1_} +I—P1.r(ﬁ“”(/w”])

27 O

Affects breaking / emerging patterns: the |-form symmetry
must emerge before the 0-form symmetry if £ # 0
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2-group vs CFT

: : (1)A RA L(2)A 2
With background gauge field d * jald = . | SN A

W/o backgrounds,Ward identity contact terms e.g.:

‘;), Gl (@) g () I (x)) = ?—_"15)/\5“”(-1‘ — (I AW (2))
oz, 27

Derivative of delta function: does not alter the charge algebra.
Implies non-zero 3-point function also at separated points.
Incompatible with additional constraints of CFT (modulo
caveats for special cases that we discuss in detail). Tension
between 2-group vs CFT. Indeed the examples with 2-group
symmetry are IR free. CFT in IR or UV only if 2-group

symmetry is IR spontaneously broken or UV emergent.
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2-group vs CFT in d>4

| -form symmetry has conserved 2-form current, Al[j,.| = d — 2

Exists as a short rep of the conf’l gp, and for d>4 it is not
necessarily free (it is co-closed, but not also closed as in 4d).
Using conservation laws we show that, as in 4d

(T (x)T"*(y)j57° (0)) =0 So no 2-group with metric diffs.

But there were not enough constraints to rule out

(JH () (y)§77 (2)) # 0 Possibly 2-group with global symms.
But only w/o susy and we don’t now
know about non-susy 6d QFTs.
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No 6d SCFT 2-group

Not even global U(1)()(CDI): no unitary 6d SCFT reps contain
global, conserved 2-form currents. So no 2-group symmetry nor
mixed gauge, global anomalies can occur for 6d SCFTs. Ifitis a
SCFT, any apparent such mixed anomalies must be cancelled by
the GSWS mechanism, along with the reducible gauge anomalies.
Justifies PFESCFiPtiOH of Ohmori, Shimizu, Tachikawa, and Yonekura.

~—~total " 1-loop” ~GSW S Hl;,( 1 i ] rlobal
‘Z’-SU b -Z/-(\’ I 71—3 — /1 X e + Ih
=0ri

Only if dynamical 120
2-form B gauge field(s). ' SCFT
This affects 't Hooft anomaly coefficients for e.g. SU(2)r in SCFT
examples with gauge multiplets. Turns out to be crucial for ensuring
positivity of the conf’l anomaly ascrr computed via 't Hooft anomalies.
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6d susy gauge theories

Example: N small SO(32) instantons theory (Witten ’95)
sp(N) gauge group, with matter s.t. both irreducible and
reducible sp gauge anomalies = zero. No tensor multiplet.
Exists with little string UV completion. Has a conserved
2-form current from *c2(Fs,(n)) so cannot be conformal.

Tt c2(Fypvy) (c2(Fsose2)) + (16 + N)p; (7)) S0 2-gl"OUP
symmetry.
Example: gauge group and matter s.t. 0 irred gauge
anomaly, with non-0 reducible gauge anomaly, cancelled
by GSWS mechanism via a dynamical 2-form gauge field.
Eliminates 2-form current & mixed anomalies. SCFT.
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Part 2: 6d (1,0) SCFTs
Hpmultiplet“Hi@
N R symmetry broken

S~

Tensor multiplet branch |
SU(2) R symmetry unbroker?

Deform SCFT
by moving on
Its vacuum
manifold:

v teracting 6d
\._SCFT at origin /

* Easier case. Just dilaton, no NG bosons. Dilaton =
tensor multiplet. Study anomaly matching in EFT.
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6d anomalies & susy

Conformal anomaly in presence of background metric and gauge fields
coupling to all global conserved currents (flavor and SU(2)r ). Equivalent
to contact terms in energy momentum tensor and current correlation
functions. Determined by operator correlation functions at separated
points, e.g. the 3 c anomalies encode 3 independent structures of energy
momentum tensor 2-point and 3-point functions. We study susy relations
between these anomaly coefficients and 't Hooft anomaly coefficients (=
exactly calculable). z&=vi™vtslobal 5 o (R)? + Bea(R)pi (T) + yp2(T) + dpo(T)
E.g. for the (1,0) SCFT of N small E8 instantons, via M-theory inflow
(N M5s @ M9 Horava-Witten wall.) Ohmori, Shimizu,

N - AT Tachikawa
En: (a,8,7,8) = (N(N?+6N +3), - = (6N +5), =N, ——)
i \ \ 5 2 ,

y

- C &
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6d (1,0) tensor LEEFT

| 5 Gk D)
Ldilaton = 5 (09)* = h(( ‘*,;) + Aa $ *{_;) Elvang, Myers, et. al.
2 @ @ )

Our deformation classification implies that b=D-term and we argue

0830473 .,

Aa = ———b" >0 Proves 6d a-theorem for susy tensor branch flows.
l
b-term susy-completes to terms in X, = 1/ Alg By recycling a 6d SUGRA
b=(y-x)/2 X4 = l(irrz(;r:r-,([i'_) + ypy (T)) analysis from Bergshoeff,
o "~ Salam, Sezgin ’86
. o 16 _ 6 .
UPS}"]Ot- ”!0115,111 — ?((r o ’D) + ,}) + :()
CDI'I5 [ 7

So exact 't Hooft anomaly coefficients give the exact conformal
anomaly. E.g. using this and OST for the anomalies get:
,. 64 ., 144 ., 99
(I(é’?f\.’) — )TA\{ -+ TIIVH -+ Tlr\

{ { {
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a, for 6d SCFTs with gauge flds:

E.g. SU(N) gauge group, 2N flavors, | tensor + anomaly
cancellation for reducible gauge + mixed gauge + R-
: w16 6.
symmetry anomalies. Use 5" — (4 — 8+ 4) + 20
{ {
gauge gauge
|| II =0*(via GSWS)
R-symm R-symm
\'% H T *AC :GSWS
o (N2 - 1)(_ 231y oz ALy 199 96,5
asoFT = { T L T LT A S

|

Again, cannot be a conserved 2-form current in SCFT at the

origin, despite apparent ¢, ( fya,q0) : it sources dH and is believed to
become part of a (poorly understood) non-Abelian version so not
gauge invariant current at the origin.
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Other conformal anomalies
via 't Hooft anomalies

4
(T = aBuler + S e 1(C) + K(VF)? + RCFF + f fup Tr(FFYF©)
@ =

. (D¢)®
On tensor branch:  Laiaion = s

+ Aa :

-3 A6
2 »
Ac;likewise = 6 derivative terms involving Weyl curvature (we assume a
linear relation to 't Hooft anomalies). Unitarity implies that /) > () with
b=0 iff the dilaton theory is free. Then all anomaly matching terms must

be prop’l to b=(y-x)/2, which susy-completes to terms in L sws ~ B A Xy

X4 = l{iﬂg(:i‘("g(li).) + yp1(T)) .,Yxl = v/ AI:%

1 y

F|nd. Acy x (y ,(?](_%y x), Aco x (y .r'_)(_))y x), Acyx(y—x)(2y—x)

L o, (0p)?
5(09)° = b Ls

Used free hyper, free tensor, and (2,0) results to get coeffs, not yet directly
derived from higher R (1,0) SUGRA at 6-derivative order (gives predictions).
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Susy relations for SCFT

H“)_-ululuil T(C) + K(VF)? + RCFF + [ fap Te(FOFPF©)

M

=1

Agrees with results already found in
literature Beccaria, Tseytlin; Yankielowicz, Zhou
(via fitting to known examples + non-
SRV unitary SCFT of a free gauge field with

' higher derivative couplings.VWe instead
c3 =4da — 66 + 8y + 20 used Ac¢; xb~ (y — x)

37T 3Ty

| As claimed b)f de Boer, Kulaxizi, Parnachev. We prove it
“1=5 (€2 +¢3) yia SCFT constraints on <TTT>:2 indep. structures.

We also use SCFT constraints on 3-point functions + tensor branch EFT
to get KfAavor j:lf]él\.-'()]' TFF :—')”"[f"‘“i""" 20y F2R2, ._/‘”:I.\-'l)[' 0.

Current 2'P0|nt COeffICIent/ —[H ) (\,.".Z',"..’f"_.‘_{_l'“],”\ (J’) f (l;."_:H'.:c'-_.:{f"‘](‘:.n_[:fl))
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SCFT 2 & 3-point functions

<0|hjll.., (3I )L)_ii,d(v_))ﬂif‘, (-‘as)) 1“{.xm|(A1 L, R, X113, X23,U13, H-;-‘:;) . ”A.l.,!.‘.( X, (”))
Supermultiplets of ops Coordinate built from 3 points
in superspace = = (.. 0,,) in superspace

E.g. 3-point function of energy momentum tensor supermultiplets

(Y O)2 8
(\\(H[)) L CTTT ‘(\?1
Shortening conditions on ops on LHS constrain C; constants on RHS.
For energy momentum tensor 3-point function this gives | constraint,
so 2 indep. Cjon the RHS, corresponding to 2 independent c¢; anomalies.
Likewise, we consider 3-point functions involving conserved currents.
Find all 3-point functions have one additional constraint from SUSY, one

fewer independent structure. Constrains the conformal anomalies.

(T (x1,00)T (x2,0)T (23,00 ~H' T T(Z)=C]TT +C]77
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E.g. small Eginstanton SCFT

Global flavor symmetry  SU(2);, x SU(2)r x Ey

Exact 7y and the susy relations give the 2-point and 3-point correlation
functions of the energy momentum tensor and conserved currents. Find e.g.

TSu(2), = 16N° +6N° — 21N

)

2  ATS q Y T
TH(-""(‘_).){; Cq l(_):’\' | I‘sz\ | 22/\

2 = 12(2N? + 3N)

< =

On the tensor branch, pull IM5 away from other (N-1)M5s+M9. Then

. «+ . 1 The change in all anomaly coefficients, including
b~(y—x)~N+ - . . : .
4 the above, is proportional to this factor, since the

dilaton EFT must trivialize if x=y.
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Summary, Conclude

® Explore space of QFTs via enhanced
symmetry lamp posts and RG flows.

® 2-group symmetry in simple QFTs in d=4, 6
via mixed anomalies. 2-group vs CFT.

® Exact results for SQFTs and SCFTs in éd.

® Thank you!
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