Title: Quantum Error-Correcting Codes in the Low Energy Subspaces
Date: Nov 07, 2018 04:00 PM
URL: http://pirsa.org/18110052
Abstract: < $\mathrm{p}>$ Recent years have shown that error correction is one of the most fundamental ingredients of various physical phenomena, from topological order to holography. However, only toy models and fixed point ground states could have been studied, even though the error-correcting properties are expected to hold generally in the low energy subspace.</p>
$<\mathrm{p}>$ In this talk, we will employ Matrix Product State formalism and see how low energy eigenstates of 1D translationally invariant Hamiltonians can form quantum error-correcting codes.\ Before diving into the results, we will review the necessary basics of quantum error correction and matrix product states.</p>
<p>Joint work with Martina Gschwendtner, Robert Koenig and Eugene Tang.</p>

QECL in Low Enerey Chlspoess
w/M. Grechuredtroer, R.konig, E Tang

1. Motivations

- Holegraply Cates ©lowaring aCFTIS
- Genencis syttems

Goplass models (Hascansey, Morzkin)
- Topargical order ziGron space ferend Ham.

2. Matmx Product State Formoliom

- Injectinty \rightarrow D enua gapped thom.

Pick $=\operatorname{sp}^{a n}\left\{\left|\psi_{1}\right\rangle, \ldots,\left|\psi_{2^{k}}\right\rangle\right\}$ in a big $H_{i} l_{\text {bartspere }} X_{\text {phys. }} . d_{m} \lambda_{p^{n} s}=2^{N}$
$\forall|\psi\rangle$, and error $\varepsilon, 3 R$

$$
R_{0} \varepsilon(|\psi \times \psi|)=|\Psi \times 4|
$$

$k=\operatorname{chim} C$
didistonce

$$
\begin{gathered}
\Uparrow K_{\text {nill-Loplame }} \\
\left\langle\psi_{i}\right| U_{d}\left|\psi_{j}\right\rangle=\lambda(0) \delta_{i j}
\end{gathered}
$$

$\forall|\psi\rangle$, and erior $\varepsilon, 3 R$ [$\quad N_{1} k$, dif) $)$ pecc
$k=\operatorname{dim} C$
$F(|4 \times 4|) R_{0} \varepsilon(|4 \times 4|) \geqslant 1-\varepsilon$
d:distance

$$
\forall\left|\psi_{i}\right\rangle,\left|\psi_{j}\right\rangle ;
$$

$$
\left\langle\psi_{i}\right| U_{d}\left|\bar{\psi}_{j}\right\rangle=\lambda(0) \delta_{i j}+\varepsilon_{i j}
$$

$$
\varepsilon \leqslant 2^{2 k+\|_{\max }} \max _{i, j} \sqrt{\varepsilon_{i j}}
$$

$i=j$: local industagnashabelity

$$
i \neq j: N_{0} d-\operatorname{loc} l \text { op }\left|\begin{array}{c}
\left.k \psi_{i}\right\rangle
\end{array}\right|\left\langle\psi_{j}\right\rangle
$$

Holograply: AdS/CFT

Bulk \longleftrightarrow Bandary
$\forall \Phi \in$ Bulk, $\forall O \in$ Bandany
$[\widetilde{\phi}, 0]=0 \quad \Longrightarrow \widetilde{\Phi}=\mathbb{1}_{\text {bandary }}$

Almherri, Dang, Harlowe (2014)
Holegrephy: AdS/CFT

Bulk \leftrightarrow Bandary
$\forall \Phi \in$ Bulk, $\forall O \in$ Bandany

$$
[\widetilde{\Phi}, 0]=0 \quad \Longrightarrow \widetilde{\phi}=\mathbb{1}_{\text {bandary }}
$$

Low energy eigaspac of CFTS ar QECC $d \sim \frac{N}{3}$

- ETH: Sreduck:
(3)
- Finite enargy eigenstates TI 1D Ham.

$$
\begin{aligned}
& \begin{array}{ll}
\left\langle E_{l}\right| O_{d}\left|E_{l}\right\rangle-\left\langle E_{l+1}\right| O_{d}\left|E_{l-1}\right\rangle \leqslant e^{-g_{1} N} & =\frac{\square}{\vdots} E \\
\left\langle E_{l}\right| O_{d}\left|E_{l+1}\right\rangle \leqslant e^{-c_{2} N} & =E \cdot \Delta \\
r(N, S N
\end{array} \\
& {\left[\left[N, \Omega(N), d, e^{-f N}\right]\right] \text { - ARECC}} \\
& C\left(N, \Omega(\log N) \Omega(\rho,)^{-18}\right) \square E \\
& \Delta \sim \sqrt{\mathbb{N}}
\end{aligned}
$$

- Motzk.n Model

Toplogicel Order $N=L^{D}$

$\Gamma:$ Bandry \rightarrow Bulk
 $\frac{f}{A} a^{2}-c^{2} d$

$$
X \longmapsto|\psi(A, X)\rangle
$$

$[[N, 2 \log D, d, \varepsilon]$ Aacec II) 1.
$\Gamma:$ Bandy \rightarrow Bulk

$$
[[N, 2 \log D, d, \varepsilon]] A \operatorname{DECC}
$$

$$
\begin{aligned}
& |\psi(a x\rangle\rangle \quad\langle\psi(A, x) \mid \psi(A, y)\rangle=0 \\
& 14(a, y)(\sqrt{15 \times 3 y}) \leqslant 8 \delta^{8} \lambda_{1}^{7 / 2}+\cdots, \quad \lambda_{0}>\lambda_{1} \geqslant \geqslant \lambda_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{A^{+}}{A}=\sum_{i=1}^{D^{2}}\right)\left(a_{i} \lambda_{i}\right.
\end{aligned}
$$

1 Naninjcctive

$=0$ othermise

$$
\begin{aligned}
& \text { XA }=(0 \times 01 \text { or }|1 \times 1| \\
& -x_{2}=10 \times 1 \left\lvert\, \frac{1}{\sqrt{N}}\right. \\
& \left.\left|4\left(A, X_{1}\right)\right\rangle=\mid 0\right)^{-2} \\
& \left|4\left(A, X_{2}\right)\right\rangle=\frac{1}{\sqrt{N}}|10-0+-+0.01\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
|4(A)\rangle=\frac{1}{A}{ }^{A} \\
\left|\psi_{j}(A, B)\right\rangle=\left(\frac{1}{A}-\frac{1}{A B}-1\right.
\end{array} \\
& \left|\phi_{p}(A, B)\right\rangle=\sum_{j} e^{i p j}\left|\psi_{j}(A, B)\right\rangle \\
& \left.-\left\langle\phi_{p}\right|(A, B)\left|O_{d}\right| \phi_{p}(A, B)\right\rangle \leq 2 \frac{d}{N} \quad\left[C N, \Omega(\log N), \Omega_{2} \log _{\alpha} N_{\alpha}^{\alpha}<\frac{1}{2}\right] \\
& \left\langle\Phi_{p}(A, B)\right| O_{d}\left|\Phi_{\rho^{\prime}}(A, B)\right\rangle \leqslant 2 \frac{d}{N}
\end{aligned}
$$

