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Abstract: <p>Repeated null-results at dark matter experiments targeted at WIMP masses, have resulted in the spotlight shifting to lighter dark matter
and more exotic WIMP candidates. In this talk | shall present the rich level structure of molecules and nuclei as a tool to explore MeV scale dark

matter and dark forces. | will also present a novel detector concept that supplies energy to dark matter, thus accessing inelastic dark matter
parameter space.</p>
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OUTLINE

» Light Dark Matter Direct Detection through Molecular
Excitations

> Detecting Baryonic Forces through a gamma decay
experiment — GANDHI"

» If time permits:Breaching the inelastic frontier with a new
direct detection concept.
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DARK MATTER LANDSCAPE

Hidden-sector Dark Matter: Anomalies,
Production Mechanisms, and Detection Strategies
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DIRECT DETECTION SCHEME
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CURRENT STATUS OF DM DIRECT DETECTION

Nuclear Recoil
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Kinematics
Local density of DM assumed to be ~ 0.3 GeV/cm?3
Larger number density of DM particles, however,

i

Typical Recoil energy: !
2

Er < §;J,NX?J

For MeV masses, this is eV, too small for conventional large
tank detectors (few keV)
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LIMITS ON MODELS FROM MEDIATORS
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MILLI-CHARGED PARTICLES
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GAPPED SYSTEMS

» Gapped systems, that can be excited by DM scattering.

» Find ways to Trigger on this.

> Examples: Semi-conductors, Super-fluid Helium, Polar

crystals etc.

Light Dark Matter Proposals References
SENSEI{arXiv:1804.00088)

Polar Molecules (arXiv:1807.10291)
Helium (arXiv:1611.06228)

Nuclear dissociation (arXiv: 1608.02940)
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MOLECULES

> Described by a Morse Potential.

» Approximately a Harmonic Oscillator potential.

r,
Internuclear Separation (r)

A rich spectrum of vibrational levels (v) and rotational levels (j).

v levels approximately equally spaced.
Level splitting typically 500 meV.

Corresponds to DM mass 500 keV and above.

Extremely useful reference: arXiv:1709.05354, Arvanitaki, Dimopoulos, Van Tilburg. for Absorption
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DM SCATTERING OFF MOLECULES

Method: Cool tank of molecular gas to temperatures where
only v=0 is populated ~ 40 K.

DM scatters molecules to excited state

Excited State Decays by émitting photon.

Single photon detectors to detect signal

Require a multi-photon signal to beat other backgrounds.
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MOLECULAR CANDIDATES

Homo-nuclear molecules: large decay times and low
quenching rates.

Hetero-nuclear molecules with smaller decay times preferred.

I

If Dipole moment too large, quenching cross-sections become
too large.

Carbon Monoxide (CO) works is an ideal middle-ground,
more candidates might be out there.
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OVERVIEW OF RATES

Decay rate set by the Einstein coefficient

resonant collisional quenching:

CO(v)+CO(0)— CO(v-1) +CO(1)

Rate abnormally large because of the approximately harmonic
evenly spaced energy levels.

Resonant quenching rates lower for higher excited state
where harmonic potential is a bad approximation.

CO(v)+He — inclusive and CO(v) +CO(0) — inclusive might
also be important.
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INCREASING PHOTON MFP

A large volume setup: Excite to a large v, look for off resonant
v—v-1 and subsequently v-1—v-2>0

Both photons are off resonant with v=0 state, essentially
infinite MFP

Large number of reflections before hitting detector.

Subdominant: v—v-4 and subsequently v-4—v-8 > 0
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A LARGE VOLUME SETUP

> Results in a very large tank, size
limited by refrigeration limitations and
reflection efficiency of the mirrors.

» To prevent resonant quenching go to
very low pressures.

» Higher pressures allowed for larger
excited states (even spacing no longer
true)
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RATE COMPARISON
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» Rate Hierarchies and Clustering again Important

» At the expense of higher energy splitting, go to higher
target masses.
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INCREASING THE PHOTON MFP

Method2 : Pressure Broadening through Helium Buffer gas
Collisions with He are not efficient at quenching CO
Collisions disrupt the decay process causing a larger width.

Pressure Broadening < a more transparent CO drastically
increasing MFP

Multiple CO isotopes (6) and j states (4) are also mutually
transparent.

More mutually transparent gases could also be added.
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A SMALL TANK SETUP

Small volume setup A relatively smaller tank, dimensions set
L by the MFP and the area of the detector.

Cover the walls with mirrors.

v£2 followed by resonant quenching

i.e. (24+0—1+1). High rate because of
approximate equal spacing.

each v=1 decays through approximately
time coincident photons.

Both photons reach the lids with high

probability.
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RATE COMPARISON
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» QOperating temperature & pressure set by:
» Rate hierarchies

» Keeping CO and He in the gas phase
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TARGET MASS

Experimental Parameters
Partial CO Pressure|Total Pressure|Detector Area|Excited State (v”)
Small Vol. (current) 10 pebar 1 bar lem? 2,
Small Vol. (5 vear projection) 10 pibar 4 bar 100cm? 2,3 and 4 3 mgr

Setup

Mg

3 and 4 30 pgr

Large Vol. Low P (current) 0.6 pbar 0.6 pbar lem? 3 3.5 mer

=

Large Vol. High I (current) 5 mbar 5 mbar lem? 10 150 gr

Microwave Kinetic Inductance Detectors (MKIDs)
Transition Edge Sensor (TES)?

Subdominant Branching fractions using PMTs
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CROSS-SECTION CALCULATION
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Spin Dependent
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> Introduction of Odd-proton/Odd-neutron isotopes
> Increases transparency

» Sensitivity to Spin-Dependent interactions
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Spin Dependent
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» Introduction of Odd-proton/Odd-neutron isotopes

» Increases transparency

» Sensitivity to Spin-Dependent interactions
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PART 2

HOW ABOUT CONSTRAINING THE MEDIATOR ITSELF
INSTEAD?




LIGHT DARK MATTER MEDIATORS

» For LDM Direct Detection, mediator cannot be too heavy; rate drops
precipitously.

» Opportunity to constrain the mediator itself.

> NA64, BDX, LDMX etc are proposed to look for forces coupled to
ClCCtrOlﬂlS Dark Photon, Scalar DM, trp = 0.h
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» Nucleophilic forces are harder to constrain.
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STATUS OF NUCLEOPHILIC FORCES - SCALAR MODEL

Supernova Trapping window

I’H¢

Source:1709.07882, Knapen, Lin, Zurek
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LOOPHOLES T0 BUILD DM MODELS. . .
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A 5 PBq source and Borexino right next to i
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> missing energy experiments stay agnostic to decay modes
» furthermore, pay small factor only once

» how do we do this for a baryonic force though? doing MET

search for baryons is a messy enterprise.

> 10 MBq?
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THE GAMMAS FROM NUCLEAR DECAYS
HIDING FROM INVESTIGATORS
(GANDHI) EXPERIMENT

NUCLEAR PHYSICS FOR PEACE
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Quotes wrongly attributed to Mahatma Gandhi:

“A gamma for a gamma makes... "
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WHAT IS THE LARGE NUMBER?

» Need for large statistics. typically EOT in a beam-type exp.

» Avogadro number of decaying nuclei is a naturally large
number

I

» Can we do nuclear gamma decays and look for MET?
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ISOTOPE SELECTION

Isotopes which are long-lived, high energy gamma emitters.

Decay sequence that is trigger-able

Industrial production is 3 plus.

Candidates: 60Co, 24Na, 65Ni.
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CASCADE GAMMA DECAYS IN COBALT DECAYS

- 2.51 MeV, 4+

vv1 = 1.17 MeV :
Evy 7 MeV i 2.16 MeV, 24

Ey, = 1.33 MeV
Ey, = 0.35 MeV
By, =2.16 MeV
$31,99.88%,0.32 MeV
£32,0.001%,0.67 MeV
35,0.12%,1.49 MeV 60N§ 0 MeV, 0+

1,33 MeV, 2+

Cascades happen because it is eastier to shed two units of spin at a time

rather than shedding 4 all at once.
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SIGNAL

> Cobalt foil inside a hermetically sealed detector

» Trigger on first gamma

> Signal event is a beta+first gamma-+missing subsequent

second gamma
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PHOTON DETECTION

Photon detection with minimum dead-time
Energy resolution, very important.

Minimal dead regions/ctacks, hermeticity.
Intrinsic Radioactivity needs to be kept low

Large detector volumes might be required to make
sure second gamma was not missed, difficult to grow
crystals.

Plastic Scintillators are ideal choice - BC-404

A Hybrid plastic Scintillator core + liquid scintillator
body might work also.
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DETECTOR SCHEME

Hermetic Detector divided into 3
modules

Gentral modules to completely stop
betas ~ cm

Inner module to detect majority of
the gammas ~ 10cm. Require
detection of first gamma here

Outer module depending on the
efficiency required.
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1.33 MEV GAMMA MIMICKING 1.17 MEV GAMMA

Mixing angle s —ROI=E, +1 0
107 ™ 5, 22
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As statistics increase, need tighter cuts in order to keep the
tails of the singular second gamma from causing fakes.
Happens mainly because E;>E;

24Na does not suffer from this....
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Will need experiment to happen close to source.

Ty5 =15 hr
— () MeV, 4+

5.24 MeV, 3+

MeV, 24+
MeV, 4+

2
1

4
2

4,
4.

= 3.87 MeV
= 4.24 MeV
L, = 1.00 MeV
L. = 2.87 MeV
L. = 2.75 MeV
- = 1.37 MeV
£ 0.076%, 0.28 MeV [J
Bo : 99.855%, 1.39 MeV e
35 : 0.064%, 4.15 MeV g 0 MeV, 0+

1.37 MeV, 24
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T0Y MODEL
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Binding in NM

SN1987TA

megp[MeV)

Source for existing limits: Knapen et al. and Y.-S. Liu, D. McKeen, and G. A, Miller ,1605.04612
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OUTLOOK

> If we can find Eo transitions with triggering, we could do even

better: SM is a 2 photon decay

» M, transitions are useful for axion searches.
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CONCLUSIONS

A rich spectrum of molecules and
nuclei could be used for unique dark
matter experiments

Molecular vibrations for Light Dark
Matter scattering experiments
Nuclear gamma decays for Baryonic

Forces

Nuclear Isomers for Inelastic Dark
Matter Direct Detection
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