Title: Exploring the dark universe through molecules and nuclei

Date: Nov 02, 2018 01:00 PM

URL: http://pirsa.org/18110040

Abstract: Repeated null-results at dark matter experiments targeted at WIMP masses, have resulted in the spotlight shifting to lighter dark matter and more exotic WIMP candidates. In this talk I shall present the rich level structure of molecules and nuclei as a tool to explore MeV scale dark matter and dark forces. I will also present a novel detector concept that supplies energy to dark matter, thus accessing inelastic dark matter parameter space.

Pirsa: 18110040 Page 1/45

ADDITIONAL REFERENCES FOR TOPICS NOT COVERED

- ➤ Kaji, H.; Asanuma, Y.; Yahara, O.; Shibue, H.; Hisamura, M.; Saito, N.; Kawakami, Y.; Murao, M. (1984). "Intragastrointestinal Alcohol Fermentation Syndrome: Report of Two Cases and Review of the Literature". Journal of the Forensic Science Society. 24 (5): 461–71. doi:10.1016/S0015-7368(84)72325-5. PMID 6520589.
- ➤ Logan BK, Jones AW (July 2000). "Endogenous ethanol 'auto-brewery syndrome' as a drunk-driving defence challenge". Medicine, Science, and the law. 40 (3): 206–15. doi: 10.1177/002580240004000304. PMID
- ➤. Adams, Cecil (May 2, 2008). "Did tin disease contribute to Napoleon's defeat in Russia?". The Straight Dope. Retrieved 17 August 2010.

Pirsa: 18110040 Page 2/45

OUTLINE

➤ Light Dark Matter Direct Detection through Molecular Excitations

- ➤ Detecting Baryonic Forces through a gamma decay experiment GANDHI ¹
- ➤ If time permits:Breaching the inelastic frontier with a new direct detection concept.

Pirsa: 18110040 Page 3/45

DARK MATTER LANDSCAPE

Hidden-sector Dark Matter: Anomalies, Production Mechanisms, and Detection Strategies

Cosmic Visions: 2017

Pirsa: 18110040 Page 4/45

DIRECT DETECTION SCHEME

source:LUX-Zeplin

Pirsa: 18110040 Page 5/45

CURRENT STATUS OF DM DIRECT DETECTION

source:Cosmic visions, 2017

Pirsa: 18110040 Page 6/45

WHY?

➤ Kinematics

- ➤ Local density of DM assumed to be ~ 0.3 GeV/cm³
- ➤ Larger number density of DM particles, however,
- ➤ Typical Recoil energy:

$$E_R < \frac{1}{2}\mu_{N\chi}v^2$$

➤ For MeV masses, this is eV, too small for conventional large tank detectors (few keV)

Pirsa: 18110040

Pirsa: 18110040 Page 8/45

MILLI-CHARGED PARTICLES

Pirsa: 18110040 Page 9/45

GAPPED SYSTEMS

- ➤ Gapped systems, that can be excited by DM scattering.
- ➤ Find ways to Trigger on this.
- Examples: Semi-conductors, Super-fluid Helium, Polar crystals etc.

Light Dark Matter Proposals References:

SENSEI(arXiv:1804.00088)

Polar Molecules (arXiv:1807.10291)

Helium (arXiv:1611.06228)

Nuclear dissociation (arXiv:1608.02940)

Pirsa: 18110040 Page 10/45

MOLECULES

➤ Described by a Morse Potential.

➤ Approximately a Harmonic Oscillator potential.

- ➤ A rich spectrum of vibrational levels (v) and rotational levels (j).
- ➤ v levels approximately equally spaced.
- ➤ Level splitting typically 500 meV.
- ➤ Corresponds to DM mass 500 keV and above.

Extremely useful reference: arXiv:1709.05354, Arvanitaki, Dimopoulos, Van Tilburg. for Absorption

Pirsa: 18110040 Page 11/45

DM SCATTERING OFF MOLECULES

- ➤ Method: Cool tank of molecular gas to temperatures where only v=0 is populated ~ 40 K.
- > DM scatters molecules to excited state
- ➤ Excited State Decays by emitting photon.
- ➤ Single photon detectors to detect signal
- ➤ Require a multi-photon signal to beat other backgrounds.

Pirsa: 18110040 Page 12/45

MOLECULAR CANDIDATES

- ➤ Homo-nuclear molecules: large decay times and low quenching rates.
- ➤ Hetero-nuclear molecules with smaller decay times preferred.
- ➤ If Dipole moment too large, quenching cross-sections become too large.
- ➤ Carbon Monoxide (CO) works is an ideal middle-ground, more candidates might be out there.

Pirsa: 18110040 Page 13/45

OVERVIEW OF RATES

- ➤ Decay rate set by the Einstein coefficient
- ➤ resonant collisional quenching:
- $ightharpoonup CO(v) + CO(0) \longrightarrow CO(v-1) + CO(1)$
- ➤ Rate abnormally large because of the approximately harmonic evenly spaced energy levels.
- ➤ Resonant quenching rates lower for higher excited state where harmonic potential is a bad approximation.
- ➤ $CO(v) + He \rightarrow inclusive and <math>CO(v) + CO(0) \rightarrow inclusive might$ also be important.

Pirsa: 18110040 Page 14/45

INCREASING PHOTON MFP

- ➤ A large volume setup: Excite to a large v, look for off resonant
- \rightarrow v \rightarrow v-1 and subsequently v-1 \rightarrow v-2>0
- ➤ Both photons are off resonant with v=0 state, essentially infinite MFP
- ➤ Large number of reflections before hitting detector.
- ➤ Subdominant: $v \rightarrow v-4$ and subsequently $v-4 \rightarrow v-8 > 0$

Pirsa: 18110040 Page 15/45

A LARGE VOLUME SETUP

- ➤ Results in a very large tank, size limited by refrigeration limitations and reflection efficiency of the mirrors.
- ➤ To prevent resonant quenching go to very low pressures.
- ➤ Higher pressures allowed for larger excited states (even spacing no longer true)

Pirsa: 18110040 Page 16/45

RATE COMPARISON

- ➤ Rate Hierarchies and Clustering again Important
- ➤ At the expense of higher energy splitting, go to higher target masses.

Pirsa: 18110040 Page 17/45

INCREASING THE PHOTON MFP

- ➤ Method2 : Pressure Broadening through Helium Buffer gas
- ➤ Collisions with He are not efficient at quenching CO
- ➤ Collisions disrupt the decay process causing a larger width.
- ➤ Pressure Broadening → a more transparent CO drastically increasing MFP
- ➤ Multiple CO isotopes (6) and j states (4) are also mutually transparent.
- ➤ More mutually transparent gases could also be added.

Pirsa: 18110040 Page 18/45

A SMALL TANK SETUP

- ➤ A relatively smaller tank, dimensions set by the MFP and the area of the detector.
- ➤ Cover the walls with mirrors.
- \rightarrow v= 1 2 followed by resonant quenching
- ➤ i.e. $(2+0\rightarrow 1+1)$. High rate because of approximate equal spacing.
- ➤ each v=1 decays through approximately time coincident photons.
- ➤ Both photons reach the lids with high probability.

Pirsa: 18110040 Page 19/45

RATE COMPARISON

- ➤ Operating temperature & pressure set by:
- ➤ Rate hierarchies
- ➤ Keeping CO and He in the gas phase

Pirsa: 18110040 Page 20/45

TARGET MASS

Setup	Experimental Parameters				m a
	Partial CO Pressure	Total Pressure	Detector Area	Excited State (v')	$\mathbf{m}_{ ext{eff}}$
Small Vol. (current)	$10~\mu \mathrm{bar}$	4 bar	$1 \mathrm{cm}^2$	2,3 and 4	$30~\mu \mathrm{gr}$
Small Vol. (5 year projection)	$10~\mu \mathrm{bar}$	4 bar	$100 \mathrm{cm}^2$	2,3 and 4	3 mgr
Large Vol. Low P (current)	$0.6~\mu \mathrm{bar}$	$0.6~\mu{ m bar}$	$1 \mathrm{cm}^2$	3	3.5 mgr
Large Vol. High P (current)	5 mbar	5 mbar	$1 \mathrm{cm}^2$	10	$150~\mathrm{gr}$

Microwave Kinetic Inductance Detectors (MKIDs)

Transition Edge Sensor

(TES)?

Subdominant Branching fractions using PMTs

Pirsa: 18110040 Page 21/45

CROSS-SECTION CALCULATION

$$\langle \sigma v \rangle = \bar{\sigma}_n \sum_{i} \int \frac{q dq}{2\mu_{\chi n}^2} f_{PN,i}^2 |F_{\rm DM}(q)|^2 \langle |F_{{\rm mol},v'J'}(q)|^2 \rangle_i \eta(v_{\rm min}(q))$$

 $\mu_{\chi n}$

 $\eta(v_{\min}(q))$

 $\bar{\sigma}_n$

 $F_{\rm DM}(q)$

$$\langle |F_{\text{mol},v'J'}(q)|^2 \rangle \equiv \left\langle \left| \int d^3 r e^{i\frac{\mu_{12}}{m_1} \mathbf{q} \cdot \mathbf{r}} \Psi^*_{v'J'}(\mathbf{r}) \Psi_{vJ}(\mathbf{r}) \right|^2 \right\rangle$$

Reduced Mass

Captures DM velocity distribution

Reference Cross-section

Dark Matter Form Factor

Molecular Form Factor

REACH

Spin Independent

Pirsa: 18110040 Page 23/45

REACH

Spin Dependent

- ➤ Introduction of Odd-proton/Odd-neutron isotopes
- ➤ Increases transparency
- ➤ Sensitivity to Spin-Dependent interactions

Pirsa: 18110040 Page 24/45

REACH

Spin Dependent

- ➤ Introduction of Odd-proton/Odd-neutron isotopes
- ➤ Increases transparency
- ➤ Sensitivity to Spin-Dependent interactions

Page 25 of 63

Pirsa: 18110040 Page 25/45

Pirsa: 18110040 Page 26/45

LIGHT DARK MATTER MEDIATORS

➤ For LDM Direct Detection, mediator cannot be too heavy; rate drops precipitously.

➤ Opportunity to constrain the mediator itself.

➤ NA64, BDX, LDMX etc are proposed to look for forces coupled to

electrons

➤ Nucleophilic forces are harder to constrain.

Pirsa: 18110040 Page 27/45

STATUS OF NUCLEOPHILIC FORCES - SCALAR MODEL

Source:1709.07882, Knapen, Lin, Zurek

Pirsa: 18110040 Page 28/45

LOOPHOLES TO BUILD DM MODELS...

.....

Pirsa: 18110040 Page 29/45

A 5 PBq source and Borexino right next to it 1706.00424. Pospelov, Tsai.

Pirsa: 18110040 Page 30/45

MET

- ➤ missing energy experiments stay agnostic to decay modes
- ➤ furthermore, pay small factor only once
- ➤ how do we do this for a baryonic force though? doing MET search for baryons is a messy enterprise.

➤ 10 MBq?

Pirsa: 18110040 Page 31/45

THE GAMMAS FROM NUCLEAR DECAYS HIDING FROM INVESTIGATORS (GANDHI) EXPERIMENT

NUCLEAR PHYSICS FOR PEACE

Quotes wrongly attributed to Mahatma Gandhi:

"A gamma for a gamma makes..."

Pirsa: 18110040 Page 32/45

WHAT IS THE LARGE NUMBER?

- ➤ Need for large statistics. typically EOT in a beam-type exp.
- ➤ Avogadro number of decaying nuclei is a naturally large number

➤ Can we do nuclear gamma decays and look for MET?

Pirsa: 18110040 Page 33/45

ISOTOPE SELECTION

➤ Isotopes which are long-lived, high energy gamma emitters.

- ➤ Decay sequence that is trigger-able
- ➤ Industrial production is a plus.
- ➤ Candidates: ⁶⁰Co, ²⁴Na, ⁶⁵Ni.

Pirsa: 18110040 Page 34/45

CASCADE GAMMA DECAYS IN COBALT DECAYS

Cascades happen because it is easier to shed two units of spin at a time rather than shedding 4 all at once.

Pirsa: 18110040 Page 35/45

SIGNAL

- ➤ Cobalt foil inside a hermetically sealed detector
- ➤ Trigger on first gamma
- ➤ Signal event is a beta+first gamma+missing subsequent second gamma

Pirsa: 18110040 Page 36/45

PHOTON DETECTION

- ➤ Photon detection with minimum dead-time
- ➤ Energy resolution, very important.
- ➤ Minimal dead regions/cracks, hermeticity.
- ➤ Intrinsic Radioactivity needs to be kept low
- ➤ Large detector volumes might be required to make sure second gamma was not missed, difficult to grow crystals.
- ➤ Plastic Scintillators are ideal choice BC-404
- ➤ A Hybrid plastic Scintillator core + liquid scintillator body might work also.

Pirsa: 18110040 Page 37/45

PHOTON DETECTION

- ➤ Photon detection with minimum dead-time
- ➤ Energy resolution, very important.
- ➤ Minimal dead regions/cracks, hermeticity.
- ➤ Intrinsic Radioactivity needs to be kept low
- ➤ Large detector volumes might be required to make sure second gamma was not missed, difficult to grow crystals.
- ➤ Plastic Scintillators are ideal choice BC-404
- ➤ A Hybrid plastic Scintillator core + liquid scintillator body might work also.

Pirsa: 18110040 Page 38/45

DETECTOR SCHEME

- ➤ Hermetic Detector divided into 3 modules
- ➤ Çentral modules to completely stop betas ~ cm
- ➤ Inner module to detect majority of the gammas ~ 10cm. Require detection of first gamma here
- ➤ Outer module depending on the efficiency required.

Pirsa: 18110040 Page 39/45

1.33 MEV GAMMA MIMICKING 1.17 MEV GAMMA

Mixing angle $-ROI = E_v \pm 1 \sigma$ \cdot ROI = E_v ±2 σ ROI = E, $\pm 3 \sigma$ 10^{-2} ---- ROI = E, ±4 σ No bkg; 24Na 10^{-3} 10^{-4} 10^{-5} 10^{-6} 10^{-7} 10^{12} 10^{14} 10^{4} 10^{6} 10^{8} Number of decays

- ➤ As statistics increase, need tighter cuts in order to keep the tails of the singular second gamma from causing fakes. Happens mainly because E₂>E₁
- ➤ 24Na does not suffer from this....

Pirsa: 18110040

24NA

Will need experiment to happen close to source.

Pirsa: 18110040 Page 41/45

TOY MODEL

 $\mathcal{L} = g_p \phi \bar{p} p$

For an E₂ transition,

 $H_{\rm int}^{\phi} = g_p R_p^i R_p^j \nabla_i \nabla_j \phi(k)$

$$H_{\rm int}^{\gamma} = eR_p^i R_p^j \nabla_i \epsilon_j$$

Invisible branching fraction:

$$\frac{\Gamma(\phi)}{\Gamma_{\gamma,E_2}} \sim \frac{1}{2} \left(\frac{g_p}{e}\right)^2 \left(1 - \frac{m_\phi^2}{\omega^2}\right)^{\frac{5}{2}}$$

Pirsa: 18110040

Pirsa: 18110040 Page 43/45

OUTLOOK

- ➤ If we can find E₀ transitions with triggering, we could do even better: SM is a 2 photon decay
- $ightharpoonup M_1$ transitions are useful for axion searches.

Pirsa: 18110040 Page 44/45

CONCLUSIONS

- ➤ A rich spectrum of molecules and nuclei could be used for unique dark matter experiments
- ➤ Molecular vibrations for Light Dark Matter scattering experiments
- ➤ Nuclear gamma decays for Baryonic Forces
- ➤ Nuclear Isomers for Inelastic Dark
 Matter Direct Detection

Pirsa: 18110040 Page 45/45